📄 randomdataimpl.java
字号:
* 1000 * mean.</p> * * @param mean mean of the Poisson distribution. * @return the random Poisson value. */ public long nextPoisson(double mean) { if (mean <= 0) { throw new IllegalArgumentException("Poisson mean must be > 0"); } double p = Math.exp(-mean); long n = 0; double r = 1.0d; double rnd = 1.0d; RandomGenerator rand = getRan(); while (n < 1000 * mean) { rnd = rand.nextDouble(); r = r * rnd; if (r >= p) { n++; } else { return n; } } return n; } /** * Generate a random value from a Normal (a.k.a. Gaussian) distribution * with the given mean, <code>mu</code> and the given standard deviation, * <code>sigma</code>. * * @param mu the mean of the distribution * @param sigma the standard deviation of the distribution * @return the random Normal value */ public double nextGaussian(double mu, double sigma) { if (sigma <= 0) { throw new IllegalArgumentException("Gaussian std dev must be > 0"); } RandomGenerator rand = getRan(); return sigma * rand.nextGaussian() + mu; } /** * Returns a random value from an Exponential distribution with the given * mean. * <p> * <strong>Algorithm Description</strong>: Uses the * <a href="http://www.jesus.ox.ac.uk/~clifford/a5/chap1/node5.html"> * Inversion Method</a> to generate exponentially distributed random values * from uniform deviates.</p> * * @param mean the mean of the distribution * @return the random Exponential value */ public double nextExponential(double mean) { if (mean < 0.0) { throw new IllegalArgumentException ("Exponential mean must be >= 0"); } RandomGenerator rand = getRan(); double unif = rand.nextDouble(); while (unif == 0.0d) { unif = rand.nextDouble(); } return -mean * Math.log(unif); } /** * {@inheritDoc}<p> * <strong>Algorithm Description</strong>: scales the output of * Random.nextDouble(), but rejects 0 values (i.e., will generate another * random double if Random.nextDouble() returns 0). * This is necessary to provide a symmetric output interval * (both endpoints excluded).</p> * * @param lower the lower bound. * @param upper the upper bound. * @return a uniformly distributed random value from the interval (lower, upper) */ public double nextUniform(double lower, double upper) { if (lower >= upper) { throw new IllegalArgumentException ("lower bound must be < upper bound"); } RandomGenerator rand = getRan(); // ensure nextDouble() isn't 0.0 double u = rand.nextDouble(); while(u <= 0.0){ u = rand.nextDouble(); } return lower + u * (upper - lower); } /** * Returns the RandomGenerator used to generate non-secure * random data. * <p> * Creates and initializes a default generator if null.</p> * * @return the Random used to generate random data * @since 1.1 */ private RandomGenerator getRan() { if (rand == null) { rand = new JDKRandomGenerator(); rand.setSeed(System.currentTimeMillis()); } return rand; } /** * Returns the SecureRandom used to generate secure random data. * <p> * Creates and initializes if null.</p> * * @return the SecureRandom used to generate secure random data */ private SecureRandom getSecRan() { if (secRand == null) { secRand = new SecureRandom(); secRand.setSeed(System.currentTimeMillis()); } return secRand; } /** * Reseeds the random number generator with the supplied seed. * <p> * Will create and initialize if null.</p> * * @param seed the seed value to use */ public void reSeed(long seed) { if (rand == null) { rand = new JDKRandomGenerator(); } rand.setSeed(seed); } /** * Reseeds the secure random number generator with the current time * in milliseconds. * <p> * Will create and initialize if null.</p> */ public void reSeedSecure() { if (secRand == null) { secRand = new SecureRandom(); } secRand.setSeed(System.currentTimeMillis()); } /** * Reseeds the secure random number generator with the supplied seed. * <p> * Will create and initialize if null.</p> * * @param seed the seed value to use */ public void reSeedSecure(long seed) { if (secRand == null) { secRand = new SecureRandom(); } secRand.setSeed(seed); } /** * Reseeds the random number generator with the current time * in milliseconds. */ public void reSeed() { if (rand == null) { rand = new JDKRandomGenerator(); } rand.setSeed(System.currentTimeMillis()); } /** * Sets the PRNG algorithm for the underlying SecureRandom instance * using the Security Provider API. The Security Provider API is defined in * <a href="http://java.sun.com/j2se/1.3/docs/guide/security/CryptoSpec.html#AppA"> * Java Cryptography Architecture API Specification & Reference.</a> * <p> * <strong>USAGE NOTE:</strong> This method carries <i>significant</i> * overhead and may take several seconds to execute. * </p> * * @param algorithm the name of the PRNG algorithm * @param provider the name of the provider * @throws NoSuchAlgorithmException if the specified algorithm * is not available * @throws NoSuchProviderException if the specified provider * is not installed */ public void setSecureAlgorithm(String algorithm, String provider) throws NoSuchAlgorithmException, NoSuchProviderException { secRand = SecureRandom.getInstance(algorithm, provider); } /** * Uses a 2-cycle permutation shuffle to generate a random permutation. * The shuffling process is described * <a href="http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node83.html"> * here</a>. * @param n the population size. * @param k the number to choose. * @return the random permutation. */ public int[] nextPermutation(int n, int k) { if (k > n) { throw new IllegalArgumentException ("permutation k exceeds n"); } if (k == 0) { throw new IllegalArgumentException ("permutation k must be > 0"); } int[] index = getNatural(n); shuffle(index, n - k); int[] result = new int[k]; for (int i = 0; i < k; i++) { result[i] = index[n - i - 1]; } return result; } /** * Uses a 2-cycle permutation shuffle to generate a random permutation. * <strong>Algorithm Description</strong>: Uses a 2-cycle permutation * shuffle to generate a random permutation of <code>c.size()</code> and * then returns the elements whose indexes correspond to the elements of * the generated permutation. * This technique is described, and proven to generate random samples, * <a href="http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node83.html"> * here</a> * @param c Collection to sample from. * @param k sample size. * @return the random sample. */ public Object[] nextSample(Collection c, int k) { int len = c.size(); if (k > len) { throw new IllegalArgumentException ("sample size exceeds collection size"); } if (k == 0) { throw new IllegalArgumentException ("sample size must be > 0"); } Object[] objects = c.toArray(); int[] index = nextPermutation(len, k); Object[] result = new Object[k]; for (int i = 0; i < k; i++) { result[i] = objects[index[i]]; } return result; } //------------------------Private methods---------------------------------- /** * Uses a 2-cycle permutation shuffle to randomly re-order the last elements * of list. * * @param list list to be shuffled * @param end element past which shuffling begins */ private void shuffle(int[] list, int end) { int target = 0; for (int i = list.length - 1 ; i >= end; i--) { if (i == 0) { target = 0; } else { target = nextInt(0, i); } int temp = list[target]; list[target] = list[i]; list[i] = temp; } } /** * Returns an array representing n. * * @param n the natural number to represent * @return array with entries = elements of n */ private int[] getNatural(int n) { int[] natural = new int[n]; for (int i = 0; i < n; i++) { natural[i] = i; } return natural; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -