⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 abstractrandomgenerator.java

📁 Apache的common math数学软件包
💻 JAVA
字号:
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *      http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */package org.apache.commons.math.random;/** * Abstract class implementing the {@link  RandomGenerator} interface. * Default implementations for all methods other than {@link #nextDouble()} and * {@link #setSeed(long)} are provided.  * <p> * All data generation methods are based on <code>nextDouble().</code> * Concrete implementations <strong>must</strong> override * this method and <strong>should</strong> provide better / more * performant implementations of the other methods if the underlying PRNG * supplies them.</p> * * @since 1.1 * @version $Revision: 615734 $ $Date: 2008-01-27 23:10:03 -0700 (Sun, 27 Jan 2008) $ */public abstract class AbstractRandomGenerator implements RandomGenerator {        /**      * Cached random normal value.  The default implementation for      * {@link #nextGaussian} generates pairs of values and this field caches the     * second value so that the full algorithm is not executed for every     * activation.  The value <code>Double.NaN</code> signals that there is     * no cached value.  Use {@link #clear} to clear the cached value.     */    private double cachedNormalDeviate = Double.NaN;        /**     * Construct a RandomGenerator.     */    public AbstractRandomGenerator() {        super();            }        /**     * Clears the cache used by the default implementation of      * {@link #nextGaussian}. Implemementations that do not override the     * default implementation of <code>nextGaussian</code> should call this     * method in the implementation of {@link #setSeed(long)}     */    public void clear() {        cachedNormalDeviate = Double.NaN;    }        /**     * Sets the seed of the underyling random number generator using a      * <code>long</code> seed.  Sequences of values generated starting with the     * same seeds should be identical.     * <p>     * Implementations that do not override the default implementation of      * <code>nextGaussian</code> should include a call to {@link #clear} in the     * implementation of this method.</p>     *     * @param seed the seed value     */    public abstract void setSeed(long seed);      /**     * Generates random bytes and places them into a user-supplied      * byte array.  The number of random bytes produced is equal to      * the length of the byte array.     * <p>     * The default implementation fills the array with bytes extracted from     * random integers generated using {@link #nextInt}.</p>     *      * @param bytes the non-null byte array in which to put the      * random bytes     */    public void nextBytes(byte[] bytes) {        int bytesOut = 0;        while (bytesOut < bytes.length) {          int randInt = nextInt();          for (int i = 0; i < 3; i++) {              if ( i > 0) {                  randInt = randInt >> 8;              }              bytes[bytesOut++] = (byte) randInt;              if (bytesOut == bytes.length) {                  return;              }          }        }    }     /**     * Returns the next pseudorandom, uniformly distributed <code>int</code>     * value from this random number generator's sequence.       * All 2<font size="-1"><sup>32</sup></font> possible <tt>int</tt> values     * should be produced with  (approximately) equal probability.      * <p>     * The default implementation provided here returns      * <pre>     * <code>(int) (nextDouble() * Integer.MAX_VALUE)</code>     * </pre></p>     *     * @return the next pseudorandom, uniformly distributed <code>int</code>     *  value from this random number generator's sequence     */    public int nextInt() {        return (int) (nextDouble() * Integer.MAX_VALUE);    }    /**     * Returns a pseudorandom, uniformly distributed <tt>int</tt> value     * between 0 (inclusive) and the specified value (exclusive), drawn from     * this random number generator's sequence.      * <p>       * The default implementation returns      * <pre>     * <code>(int) (nextDouble() * n</code>     * </pre></p>     *     * @param n the bound on the random number to be returned.  Must be     * positive.     * @return  a pseudorandom, uniformly distributed <tt>int</tt>     * value between 0 (inclusive) and n (exclusive).     * @throws IllegalArgumentException if n is not positive.     */    public int nextInt(int n) {        if (n <= 0 ) {            throw new IllegalArgumentException("upper bound must be positive");        }        int result = (int) (nextDouble() * n);        return result < n ? result : n - 1;    }     /**     * Returns the next pseudorandom, uniformly distributed <code>long</code>     * value from this random number generator's sequence.  All      * 2<font size="-1"><sup>64</sup></font> possible <tt>long</tt> values      * should be produced with (approximately) equal probability.      * <p>       * The default implementation returns      * <pre>     * <code>(long) (nextDouble() * Long.MAX_VALUE)</code>     * </pre></p>     *     * @return  the next pseudorandom, uniformly distributed <code>long</code>     *value from this random number generator's sequence     */    public long nextLong() {        return (long) (nextDouble() * Long.MAX_VALUE);    }    /**     * Returns the next pseudorandom, uniformly distributed     * <code>boolean</code> value from this random number generator's     * sequence.       * <p>       * The default implementation returns      * <pre>     * <code>nextDouble() <= 0.5</code>     * </pre></p>     *      * @return  the next pseudorandom, uniformly distributed     * <code>boolean</code> value from this random number generator's     * sequence     */    public boolean nextBoolean() {        return nextDouble() <= 0.5;    }     /**     * Returns the next pseudorandom, uniformly distributed <code>float</code>     * value between <code>0.0</code> and <code>1.0</code> from this random     * number generator's sequence.       * <p>       * The default implementation returns      * <pre>     * <code>(float) nextDouble() </code>     * </pre></p>     *     * @return  the next pseudorandom, uniformly distributed <code>float</code>     * value between <code>0.0</code> and <code>1.0</code> from this     * random number generator's sequence     */    public float nextFloat() {        return (float) nextDouble();    }    /**     * Returns the next pseudorandom, uniformly distributed      * <code>double</code> value between <code>0.0</code> and     * <code>1.0</code> from this random number generator's sequence.       * <p>     * This method provides the underlying source of random data used by the     * other methods.</p>        *     * @return  the next pseudorandom, uniformly distributed      *  <code>double</code> value between <code>0.0</code> and     *  <code>1.0</code> from this random number generator's sequence     */      public abstract double nextDouble();      /**     * Returns the next pseudorandom, Gaussian ("normally") distributed     * <code>double</code> value with mean <code>0.0</code> and standard     * deviation <code>1.0</code> from this random number generator's sequence.     * <p>     * The default implementation uses the <em>Polar Method</em>     * due to G.E.P. Box, M.E. Muller and G. Marsaglia, as described in      * D. Knuth, <u>The Art of Computer Programming</u>, 3.4.1C.</p>     * <p>     * The algorithm generates a pair of independent random values.  One of     * these is cached for reuse, so the full algorithm is not executed on each     * activation.  Implementations that do not override this method should     * make sure to call {@link #clear} to clear the cached value in the      * implementation of {@link #setSeed(long)}.</p>     *      * @return  the next pseudorandom, Gaussian ("normally") distributed     * <code>double</code> value with mean <code>0.0</code> and     * standard deviation <code>1.0</code> from this random number     *  generator's sequence     */    public double nextGaussian() {        if (!Double.isNaN(cachedNormalDeviate)) {            double dev = cachedNormalDeviate;            cachedNormalDeviate = Double.NaN;            return dev;        }        double v1 = 0;        double v2 = 0;        double s = 1;        while (s >=1 ) {             v1 = 2 * nextDouble() - 1;             v2 = 2 * nextDouble() - 1;             s = v1 * v1 + v2 * v2;        }        if (s != 0) {            s = Math.sqrt(-2 * Math.log(s) / s);           }        cachedNormalDeviate = v2 * s;        return v1 * s;          }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -