📄 fraction.java
字号:
} /** * Test for the equality of two fractions. If the lowest term * numerator and denominators are the same for both fractions, the two * fractions are considered to be equal. * @param other fraction to test for equality to this fraction * @return true if two fractions are equal, false if object is * <tt>null</tt>, not an instance of {@link Fraction}, or not equal * to this fraction instance. */ public boolean equals(Object other) { boolean ret; if (this == other) { ret = true; } else if (other == null) { ret = false; } else { try { // since fractions are always in lowest terms, numerators and // denominators can be compared directly for equality. Fraction rhs = (Fraction)other; ret = (numerator == rhs.numerator) && (denominator == rhs.denominator); } catch (ClassCastException ex) { // ignore exception ret = false; } } return ret; } /** * Gets the fraction as a <tt>float</tt>. This calculates the fraction as * the numerator divided by denominator. * @return the fraction as a <tt>float</tt> */ public float floatValue() { return (float)doubleValue(); } /** * Access the denominator. * @return the denominator. */ public int getDenominator() { return denominator; } /** * Access the numerator. * @return the numerator. */ public int getNumerator() { return numerator; } /** * Gets a hashCode for the fraction. * @return a hash code value for this object */ public int hashCode() { return 37 * (37 * 17 + getNumerator()) + getDenominator(); } /** * Gets the fraction as an <tt>int</tt>. This returns the whole number part * of the fraction. * @return the whole number fraction part */ public int intValue() { return (int)doubleValue(); } /** * Gets the fraction as a <tt>long</tt>. This returns the whole number part * of the fraction. * @return the whole number fraction part */ public long longValue() { return (long)doubleValue(); } /** * Return the additive inverse of this fraction. * @return the negation of this fraction. */ public Fraction negate() { if (numerator==Integer.MIN_VALUE) { throw new ArithmeticException("overflow: too large to negate"); } return new Fraction(-numerator, denominator); } /** * Return the multiplicative inverse of this fraction. * @return the reciprocal fraction */ public Fraction reciprocal() { return new Fraction(denominator, numerator); } /** * <p>Adds the value of this fraction to another, returning the result in reduced form. * The algorithm follows Knuth, 4.5.1.</p> * * @param fraction the fraction to add, must not be <code>null</code> * @return a <code>Fraction</code> instance with the resulting values * @throws IllegalArgumentException if the fraction is <code>null</code> * @throws ArithmeticException if the resulting numerator or denominator exceeds * <code>Integer.MAX_VALUE</code> */ public Fraction add(Fraction fraction) { return addSub(fraction, true /* add */); } /** * <p>Subtracts the value of another fraction from the value of this one, * returning the result in reduced form.</p> * * @param fraction the fraction to subtract, must not be <code>null</code> * @return a <code>Fraction</code> instance with the resulting values * @throws IllegalArgumentException if the fraction is <code>null</code> * @throws ArithmeticException if the resulting numerator or denominator * cannot be represented in an <code>int</code>. */ public Fraction subtract(Fraction fraction) { return addSub(fraction, false /* subtract */); } /** * Implement add and subtract using algorithm described in Knuth 4.5.1. * * @param fraction the fraction to subtract, must not be <code>null</code> * @param isAdd true to add, false to subtract * @return a <code>Fraction</code> instance with the resulting values * @throws IllegalArgumentException if the fraction is <code>null</code> * @throws ArithmeticException if the resulting numerator or denominator * cannot be represented in an <code>int</code>. */ private Fraction addSub(Fraction fraction, boolean isAdd) { if (fraction == null) { throw new IllegalArgumentException("The fraction must not be null"); } // zero is identity for addition. if (numerator == 0) { return isAdd ? fraction : fraction.negate(); } if (fraction.numerator == 0) { return this; } // if denominators are randomly distributed, d1 will be 1 about 61% // of the time. int d1 = MathUtils.gcd(denominator, fraction.denominator); if (d1==1) { // result is ( (u*v' +/- u'v) / u'v') int uvp = MathUtils.mulAndCheck(numerator, fraction.denominator); int upv = MathUtils.mulAndCheck(fraction.numerator, denominator); return new Fraction (isAdd ? MathUtils.addAndCheck(uvp, upv) : MathUtils.subAndCheck(uvp, upv), MathUtils.mulAndCheck(denominator, fraction.denominator)); } // the quantity 't' requires 65 bits of precision; see knuth 4.5.1 // exercise 7. we're going to use a BigInteger. // t = u(v'/d1) +/- v(u'/d1) BigInteger uvp = BigInteger.valueOf(numerator) .multiply(BigInteger.valueOf(fraction.denominator/d1)); BigInteger upv = BigInteger.valueOf(fraction.numerator) .multiply(BigInteger.valueOf(denominator/d1)); BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv); // but d2 doesn't need extra precision because // d2 = gcd(t,d1) = gcd(t mod d1, d1) int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue(); int d2 = (tmodd1==0)?d1:MathUtils.gcd(tmodd1, d1); // result is (t/d2) / (u'/d1)(v'/d2) BigInteger w = t.divide(BigInteger.valueOf(d2)); if (w.bitLength() > 31) { throw new ArithmeticException ("overflow: numerator too large after multiply"); } return new Fraction (w.intValue(), MathUtils.mulAndCheck(denominator/d1, fraction.denominator/d2)); } /** * <p>Multiplies the value of this fraction by another, returning the * result in reduced form.</p> * * @param fraction the fraction to multiply by, must not be <code>null</code> * @return a <code>Fraction</code> instance with the resulting values * @throws IllegalArgumentException if the fraction is <code>null</code> * @throws ArithmeticException if the resulting numerator or denominator exceeds * <code>Integer.MAX_VALUE</code> */ public Fraction multiply(Fraction fraction) { if (fraction == null) { throw new IllegalArgumentException("The fraction must not be null"); } if (numerator == 0 || fraction.numerator == 0) { return ZERO; } // knuth 4.5.1 // make sure we don't overflow unless the result *must* overflow. int d1 = MathUtils.gcd(numerator, fraction.denominator); int d2 = MathUtils.gcd(fraction.numerator, denominator); return getReducedFraction (MathUtils.mulAndCheck(numerator/d1, fraction.numerator/d2), MathUtils.mulAndCheck(denominator/d2, fraction.denominator/d1)); } /** * <p>Divide the value of this fraction by another.</p> * * @param fraction the fraction to divide by, must not be <code>null</code> * @return a <code>Fraction</code> instance with the resulting values * @throws IllegalArgumentException if the fraction is <code>null</code> * @throws ArithmeticException if the fraction to divide by is zero * @throws ArithmeticException if the resulting numerator or denominator exceeds * <code>Integer.MAX_VALUE</code> */ public Fraction divide(Fraction fraction) { if (fraction == null) { throw new IllegalArgumentException("The fraction must not be null"); } if (fraction.numerator == 0) { throw new ArithmeticException("The fraction to divide by must not be zero"); } return multiply(fraction.reciprocal()); } /** * <p>Creates a <code>Fraction</code> instance with the 2 parts * of a fraction Y/Z.</p> * * <p>Any negative signs are resolved to be on the numerator.</p> * * @param numerator the numerator, for example the three in 'three sevenths' * @param denominator the denominator, for example the seven in 'three sevenths' * @return a new fraction instance, with the numerator and denominator reduced * @throws ArithmeticException if the denominator is <code>zero</code> */ public static Fraction getReducedFraction(int numerator, int denominator) { if (denominator == 0) { throw new ArithmeticException("The denominator must not be zero"); } if (numerator==0) { return ZERO; // normalize zero. } // allow 2^k/-2^31 as a valid fraction (where k>0) if (denominator==Integer.MIN_VALUE && (numerator&1)==0) { numerator/=2; denominator/=2; } if (denominator < 0) { if (numerator==Integer.MIN_VALUE || denominator==Integer.MIN_VALUE) { throw new ArithmeticException("overflow: can't negate"); } numerator = -numerator; denominator = -denominator; } // simplify fraction. int gcd = MathUtils.gcd(numerator, denominator); numerator /= gcd; denominator /= gcd; return new Fraction(numerator, denominator); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -