⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pruneabledeclist.java

📁 THis is part algorithm which is data base classification algorithm implemented in java
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    PruneableDecList.java *    Copyright (C) 1999 Eibe Frank * */package weka.classifiers.rules.part;import weka.classifiers.trees.j48.ClassifierSplitModel;import weka.classifiers.trees.j48.Distribution;import weka.classifiers.trees.j48.ModelSelection;import weka.classifiers.trees.j48.NoSplit;import weka.core.*;/** * Class for handling a partial tree structure that * can be pruned using a pruning set. * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.6 $ */public class PruneableDecList extends ClassifierDecList{    /**   * Constructor for pruneable partial tree structure.    *   * @param toSelectLocModel selection method for local splitting model   * @param minNum minimum number of objects in leaf   */  public PruneableDecList(ModelSelection toSelectLocModel,			  int minNum) {			           super(toSelectLocModel, minNum);  }    /**   * Method for building a pruned partial tree.   *   * @exception Exception if tree can't be built successfully   */  public void buildRule(Instances train,			Instances test) throws Exception {         buildDecList(train, test, false);    cleanup(new Instances(train, 0));  }  /**   * Builds the partial tree with hold out set   *   * @exception Exception if something goes wrong   */  public void buildDecList(Instances train, Instances test, 			   boolean leaf) throws Exception {        Instances [] localTrain,localTest;    int index,ind;    int i,j;    double sumOfWeights;    NoSplit noSplit;        m_train = null;    m_isLeaf = false;    m_isEmpty = false;    m_sons = null;    indeX = 0;    sumOfWeights = train.sumOfWeights();    noSplit = new NoSplit (new Distribution((Instances)train));    if (leaf)      m_localModel = noSplit;    else      m_localModel = m_toSelectModel.selectModel(train, test);    m_test = new Distribution(test, m_localModel);    if (m_localModel.numSubsets() > 1) {      localTrain = m_localModel.split(train);      localTest = m_localModel.split(test);      train = null;      test = null;      m_sons = new ClassifierDecList [m_localModel.numSubsets()];      i = 0;      do {	i++;	ind = chooseIndex();	if (ind == -1) {	  for (j = 0; j < m_sons.length; j++) 	    if (m_sons[j] == null)	      m_sons[j] = getNewDecList(localTrain[j],localTest[j],true);	  if (i < 2) {	    m_localModel = noSplit;	    m_isLeaf = true;	    m_sons = null;	    if (Utils.eq(sumOfWeights,0))	      m_isEmpty = true;	    return;	  }	  ind = 0;	  break;	} else 	  m_sons[ind] = getNewDecList(localTrain[ind],localTest[ind],false);      } while ((i < m_sons.length) && (m_sons[ind].m_isLeaf));            // Check if all successors are leaves      for (j = 0; j < m_sons.length; j++) 	if ((m_sons[j] == null) || (!m_sons[j].m_isLeaf))	  break;      if (j == m_sons.length) {	pruneEnd();	if (!m_isLeaf) 	  indeX = chooseLastIndex();      }else 	indeX = chooseLastIndex();    }else{      m_isLeaf = true;      if (Utils.eq(sumOfWeights, 0))	m_isEmpty = true;    }  }    /**   * Returns a newly created tree.   *   * @param data and selection method for local models.   * @exception Exception if something goes wrong   */  protected ClassifierDecList getNewDecList(Instances train, Instances test, 					    boolean leaf) throws Exception {	     PruneableDecList newDecList =       new PruneableDecList(m_toSelectModel, m_minNumObj);        newDecList.buildDecList((Instances)train, test, leaf);        return newDecList;  }  /**   * Prunes the end of the rule.   */  protected void pruneEnd() throws Exception {        double errorsLeaf, errorsTree;        errorsTree = errorsForTree();    errorsLeaf = errorsForLeaf();    if (Utils.smOrEq(errorsLeaf,errorsTree)){       m_isLeaf = true;      m_sons = null;      m_localModel = new NoSplit(localModel().distribution());    }  }  /**   * Computes error estimate for tree.   */  private double errorsForTree() throws Exception {    Distribution test;    if (m_isLeaf)      return errorsForLeaf();    else {      double error = 0;      for (int i = 0; i < m_sons.length; i++) 	if (Utils.eq(son(i).localModel().distribution().total(),0)) {	  error += m_test.perBag(i)-	    m_test.perClassPerBag(i,localModel().distribution().				maxClass());	} else	  error += ((PruneableDecList)son(i)).errorsForTree();      return error;    }  }  /**   * Computes estimated errors for leaf.   */  private double errorsForLeaf() throws Exception {    return m_test.total()-	    m_test.perClass(localModel().distribution().maxClass());  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -