⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 main.c

📁 实现了C8051F340单片机依据UDP协议传输数据
💻 C
字号:
//------------------------------------------------------------------------------
// main.c
//------------------------------------------------------------------------------
// Copyright (C) 2005 Silicon Laboratories, Inc.
//
// Date: 05/16/06 13:16:02
// Target: C8051F34x 
// Version: 1.31
//
// Description:
//
//    This is a UDP example.
//    This code runs on a C8051f340 connected to a CP2200 via AB4 board.
//
// 	This file contains the main routine, MCU initialization code, and 
//    callback functions used by the TCP/IP Library.
//
// Steps for running this example code:
//
//    1. To run the example as a UDP Echo Server, set SERVER_MODE in main.c to 1.
//       To run the example as a UDP Echo Client, set SERVER_MODE to 0.
//
//    2. If running in Client mode, place the IP address of the  PC which will
//       be running the test application (UDP_SVR.exe) in IP_DEST_ADDR in
//       mn_userconst.h.
//
//    3. Place the IP address of the embedded Ethernet controller (C8051f340
//       and CP2200) in IP_SRC_ADDR in mn_userconst.h.
//
//    4. If running in Client mode, place the IP address of the PC that will
//       be echoing the UDP packets in IP_DEST_ADDR in mn_userconst.h.
//
//    5. Connect to the C8051f340.
//
//    6. Compile and build the project code.
//
//    7. Download the code to the C8051f340.
//
//    8. If running in Client mode, run UDP_SVR.exe on the PC receiving the
//       call. Then press "Go." Once the Ethernet controller has initialized,
//       UDP_SVR.exe will wait for the embedded Ethernet controller to send
//       a string, then echo the received string back. The embedded Ethernet
//       controller will then take the string from UDP_SVR.exe and send it
//       back, and so forth.
//
//    9. If running in Server mode, press "Go." Then run UDP_CLI.exe on the PC.
//       By default, UDP_CLI.exe will send data to 216.233.5.26. If the
//       embedded Ethernet controller is using a different IP address,
//       execute UDP_CLI.exe from the command line using this syntax:
//
//       UDP_CLI.exe XXX.XXX.XXX.XXX
//
//       where XXX.XXX.XXX.XXX is the IP address of the embedded Ethernet controller.
//       UDP_CLI.exe will send out a string and wait for the embedded Ethernet
//       controller to echo it back. UDP_CLI.exe will then take the received string
//       and send it to the embedded Ethernet controller, and so forth.
//
//    10. Once the UDP example has terminated, the user may ping the C8051F340
//       at the IP address defined in IP_DEST_ADDR.
//

#include "mn_userconst.h"                      // TCP/IP Library Constants
#include "mn_stackconst.h"                     // TCP/IP Library Constants
#include "mn_errs.h"                           // Library Error Codes
#include "mn_defs.h"                           // Library Type definitions
#include "mn_funcs.h"                          // Library Function Prototypes
#include <c8051F340.h>                         // Device-specific SFR Definitions
#include <string.h>


//------------------------------------------------------------------------------
// Function Prototypes
//------------------------------------------------------------------------------

// Initialization Routines
void PORT_Init (void);
void SYSCLK_Init (void);
void EMIF_Init(void);
int establish_network_connection();

// Application Functions
void UDP(void);

//-----------------------------------------------------------------------------
// Constant Definitions 
//-----------------------------------------------------------------------------
#define SERVER_MODE  0
#define DATA_BUFF_LEN    40

//-----------------------------------------------------------------------------
// Global Variables 
//-----------------------------------------------------------------------------
static byte ECHOSTRING[]= "THIS IS COMING FROM SILABS ETHERNET-DK";
byte data_buff[DATA_BUFF_LEN];

//-----------------------------------------------------------------------------
// Main Routine
//-----------------------------------------------------------------------------
void main(void)
{
   int retval;

   // Disable watchdog timer
   PCA0MD = 0x00;

   // Initialize the MCU
   PORT_Init();
   SYSCLK_Init();
   EMIF_Init();

   while(1)
   {
      // Initialize the TCP/IP stack.
      if (mn_init() < 0)
      {
         // If code execution enters this while(1) loop, the stack failed to initialize.
         // Verify that all boards are connected and powered properly.
         while(1);
      }

      // Connect to the network
      establish_network_connection();

      // Run the UDP example.
      UDP();

      // Start the Application Layer Services
      // If this routine exits, check the return value for an error code.
      retval = mn_server();

   }
}

//-----------------------------------------------------------------------------
// establish_network_connection
//-----------------------------------------------------------------------------
//
// This function calls mn_ether_init() to initialize the CP2200 and attach to
// the network.
//
// If there is a network connection, the function returns 1.
//
// In the call to mn_ether_init(), NUM_AUTONEG_ATTEMPTS is set to 0, so the
// function will not return until it successfully auto-negotiates.
//
// mn_ether_init() will not be a blocking call if NUM_AUTONEG_ATTEMPTS is set
// to a value greater than 0.
//
int establish_network_connection()
{
   int retval;

   do
   {
      // mn_ether_init() initializes the Ethernet controller.
      // AUTO_NEG indicates that the controller will auto-negotiate.
      retval = mn_ether_init(AUTO_NEG, 0, 0);

      // If there is no link, poll link_status until it sets or the
      // CP2200 resets and then call mn_ether_init() again.
      if (retval == LINK_FAIL)
      {
         while(!link_status && !ether_reset);
      }

      // If retval is less than zero and is not LINK_FAIL, there is a 
      // hardware error.
      else if (retval < 0)
      {
         // Verify that the Ethernet controller is connected and powered properly.
         // Verity that the EMIF has been configured at a speed compatible with the
         //    Ethernet controller.
         while(1);
      }

   }while(retval < 0);

   return (1);

}

//-----------------------------------------------------------------------------
// Application Functions
//-----------------------------------------------------------------------------

//-----------------------------------------------------------------------------
// UDP
//-----------------------------------------------------------------------------
//
void UDP(void)
{
   SCHAR socket_no;
   PSOCKET_INFO socket_ptr;
   byte *data_ptr;
   word16 data_len;
   int status;

#if SERVER_MODE

   // When dest_ip is null_addr any IP address is allowed to connect
   socket_no = mn_open(null_addr,ECHO_PORT,0,NO_OPEN,PROTO_UDP,\
                       STD_TYPE,data_buff,DATA_BUFF_LEN);
   data_ptr = PTR_NULL;
   data_len = 0;

#else

   socket_no = mn_open(ip_dest_addr,DEFAULT_PORT,ECHO_PORT,NO_OPEN,PROTO_UDP,\
                       STD_TYPE,data_buff,DATA_BUFF_LEN);
   data_ptr = ECHOSTRING;
   data_len = strlen((char *)ECHOSTRING);

#endif

   if (socket_no < 0)
   {
      return;
   }

   socket_ptr = MK_SOCKET_PTR(socket_no);    // Get pointer to the socket

   while(1)
   {
      status = 0;

      if (data_ptr != PTR_NULL)
         status = mn_send(socket_no,data_ptr,data_len);

      if (status < 0)
      {
         data_len = 0;
         break;
      }

      status = mn_recv(socket_no,data_buff,DATA_BUFF_LEN);

      if (status < 0 && status != SOCKET_TIMED_OUT)
      {
         break;
      }

      // If we got something, send back what we got
      if (status > 0)
      {
         data_ptr = socket_ptr->recv_ptr;
         data_len = socket_ptr->recv_len;
      }

   }

   mn_abort(socket_no);
}

//-----------------------------------------------------------------------------
// Initialization Routines
//-----------------------------------------------------------------------------

//-----------------------------------------------------------------------------
// PORT_Init
//-----------------------------------------------------------------------------
//
// Configure the Interrupts, Crossbar and GPIO ports
//
void PORT_Init (void)
{

   IT01CF = 0x03;                      // Enable Interrupt 0 on P0.3
   TCON &= ~0x01;                      // Make /INT0 level triggered

   XBR0    = 0x01;                     // Enable UART on P0.4(TX) and P0.5(RX)
   XBR1    = 0x40;                     // Enable crossbar and enable
                                       // weak pull-ups

   P0MDOUT |= 0x10;                    // enable UTX as push-pull output
   P1MDOUT |= 0xD8;                    // /WR and /RD are push-pull
                                       // AB4 LEDs are push-pull
   P2MDOUT |= 0xFF;
   P3MDOUT |= 0xFF;
   P4MDOUT |= 0xFF;

}

//-----------------------------------------------------------------------------
// EMIF_Init
//-----------------------------------------------------------------------------
//
// Configure the External Memory Interface for both on and off-chip access.
//
void EMIF_Init (void)
{

   EMI0CF = 0x1B;             // non-muxed mode; split mode
                              // with bank select

   EMI0TC = EMIF_TIMING;      // This constant may be modified
                              // according to SYSCLK to meet the
                              // timing requirements for the CP2200

   EMI0CN = BASE_ADDRESS;     // Page of XRAM accessed by EMIF

}

//-----------------------------------------------------------------------------
// SYSCLK_Init
//-----------------------------------------------------------------------------
//
// This routine initializes the system clock.
//
void SYSCLK_Init (void)
{
   int i;

   OSCICN |= 0x03;                     // Configure internal oscillator for
                                       // its maximum frequency
  
   CLKMUL = 0x00;                      // Reset Clock Multiplier and select
                                       // internal oscillator as input source

   CLKMUL |= 0x80;                     // Enable the Clock Multiplier

   for(i = 0; i < 256; i++);           // Delay at least 5us
   
   CLKMUL |= 0xC0;                     // Initialize the Clock Multiplier
   
   while(!(CLKMUL & 0x20));            // Wait for MULRDY => 1
   
   RSTSRC = 0x06;                      // Enable missing clock detector
                                       // and VDD monitor
   
   FLSCL |= 0x10;                      // Set Flash Scale for 48MHz
   
   CLKSEL |= 0x03;                     // Select output of clock multiplier
                                       // as the system clock.

}

//-----------------------------------------------------------------------------
// ether_reset_low
//-----------------------------------------------------------------------------
//
// This routine drives the reset pin of the ethernet controller low.
//
void ether_reset_low()
{

   P1 &= ~0x01;               // Pull reset low

}

//-----------------------------------------------------------------------------
// ether_reset_high
//-----------------------------------------------------------------------------
//
// This routine places the reset pin in High-Z allowing it to be pulled up 
// using the external pull-up resistor.
//
// Additionally, this routine waits for the reset pin to read high before
// exiting.
//
void ether_reset_high (void)
{

   P1 |= 0x01;               // Allow /RST to rise
   while(!(P1 & 0x01));      // Wait for /RST to go high


}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -