📄 example_280xhrpwm_sfo_v5.c
字号:
// TI File $Revision: /main/1 $
// Checkin $Date: June 26, 2007 13:58:55 $
//###########################################################################
//
// FILE: Example_280xHRPWM_SFO_V5.c
//
// TITLE: DSP280x Device HRPWM SFO V5 example
//
// ASSUMPTIONS:
//
//
// This program requires the DSP280x header files, which include
// the following files required for this example:
// SFO_V5.h and SFO_TI_Build_V3.lib
//
// Monitor ePWM1A-ePWM4A (GPIO0, 2, 4, 6) pins on an oscilloscope.
//
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 280x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// Boot GPIO18 GPIO29 GPIO34
// Mode SPICLKA SCITXDA
// SCITXB
// -------------------------------------
// Flash 1 1 1
// SCI-A 1 1 0
// SPI-A 1 0 1
// I2C-A 1 0 0
// ECAN-A 0 1 1
// SARAM 0 1 0 <- "boot to SARAM"
// OTP 0 0 1
// I/0 0 0 0
//
//
//
// DESCRIPTION:
//
// This example modifies the MEP control registers to show edge displacement
// due to the HRPWM control extension of the respective ePWM module.
//
// This example calls the following TI's MEP Scale Factor Optimizer (SFO)
// software library V5 functions:
//
// int SFO_MepEn_V5(int i);
// updates MEP_ScaleFactor[i] dynamically when HRPWM is in use.
// - returns 1 when complete for the specified channel
// - returns 0 if not complete for the specified channel
// - returns 2 if there is a scale factor out-of-range error
// (MEP_ScaleFactor[n] differs from seed MEP_ScaleFactor[0]
// by more than +/-15). To remedy this:
// 1. Check your software to make sure MepEn completes for
// 1 channel before calling MepEn for another channel.
// 2. Re-run MepDis and re-seed MEP_ScaleFactor[0]. Then
// try again.
// 3. If reason is known and acceptable, treat return of "2"
// like a return of "1", indicating calibration complete.
//
// int SFO_MepDis_V5(int i);
// updates MEP_ScaleFactor[i] when HRPWM is not used
// - returns 1 when complete for the specified channel
// - returns 0 if not complete for the specified channel
//
// MEP_ScaleFactor[PWM_CH] is a global array variable used by the SFO library
//
// =======================================================================
// NOTE: For more information on using the SFO software library, see the
// High-Resolution Pulse Width Modulator (HRPWM) Reference Guide (spru924)
// =======================================================================
//
// This example is intended to explain the HRPWM capabilities. The code can be
// optimized for code efficiency. Refer to TI's Digital power application
// examples and TI Digital Power Supply software libraries for details.
//
// All ePWM channels with HRPWM capabilities will have fine
// edge movement due to the HRPWM logic
//
// 3.33MHz PWM, ePWMxA toggle high/low with MEP control on rising edge
//
// To load and run this example:
// 1. **!!IMPORTANT!!** - in SFO_V5.h, set PWM_CH to the max number of
// HRPWM channels plus one. For example, for the F2808, the
// maximum number of HRPWM channels is 4. 4+1=5, so set
// #define PWM_CH 5 in SFO_V5.h. (Default is 5)
// 2. Run this example at 100MHz SYSCLKOUT
// 3. Load the Example_280xHRPWM_SFO.gel and observe variables in the watch window
// 4. Activate Real time mode
// 5. Run the code
// 6. Watch ePWM1A-4A waveforms on a Oscillosope
// 7. In the watch window:
// Set the variable UpdateFine = 1 to observe the ePWMxA output
// with HRPWM capabilites (default)
// Observe the duty cycle of the waveform changes in fine MEP steps
// 8. In the watch window:
// Change the variable UpdateFine to 0, to observe the
// ePWMxA output without HRPWM capabilites
// Observe the duty cycle of the waveform changes in coarse steps of 10nsec.
//
//
//
//
//###########################################################################
// $TI Release: DSP280x Header Files V1.60 $
// $Release Date: December 3, 2007 $
//###########################################################################
#include "DSP280x_Device.h" // DSP280x Device Headerfile
#include "DSP280x_Examples.h" // DSP280x Examples Headerfile
#include "DSP280x_EPwm_defines.h" // useful defines for initialization
#include "SFO_V5.h" // SFO V5 library headerfile - required to use SFO library functions
// **!!IMPORTANT!!**
// UPDATE NUMBER OF HRPWM CHANNELS + 1 USED IN SFO_V5.H
// i.e. #define PWM_CH 5 // F2808 has a maximum of 4 HRPWM channels (5=4+1)
// Declare your function prototypes here
//---------------------------------------------------------------
void HRPWM_Config(int);
void error (void);
// General System nets - Useful for debug
Uint16 UpdateFine, DutyFine, status, nMepChannel;
//====================================================================
// The following declarations are required in order to use the SFO
// library functions:
//
int MEP_ScaleFactor[PWM_CH]; // Global array used by the SFO library
// for n HRPWM channels + 1 for MEP_ScaleFactor[0]
// Array of pointers to EPwm register structures:
// *ePWM[0] is defined as dummy value not used in the example
volatile struct EPWM_REGS *ePWM[PWM_CH] =
{ &EPwm1Regs, &EPwm1Regs, &EPwm2Regs, &EPwm3Regs, &EPwm4Regs};
//====================================================================
void main(void)
{
// Local variables
int i;
Uint32 temp;
int16 CMPA_reg_val, CMPAHR_reg_val;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP280x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP280x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// For this case just init GPIO pins for ePWM1-ePWM4
// This function is in the DSP280x_EPwm.c file
InitEPwmGpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP280x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP280x_DefaultIsr.c.
// This function is found in DSP280x_PieVect.c.
InitPieVectTable();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP280x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
// For this example, only initialize the ePWM
// Step 5. User specific code, enable interrupts:
UpdateFine = 1;
DutyFine = 0;
nMepChannel=1; // HRPWM diagnostics start on ePWM channel 1
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;
EDIS;
// MEP_ScaleFactor variables intialization for SFO library functions
for(i=0;i<PWM_CH;i++)
{
MEP_ScaleFactor[i] =0;
}
// MEP_ScaleFactor variables intialization using SFO_MepDis_V5 library function.
for(i=1;i<PWM_CH;i++)
{
while ( SFO_MepDis_V5(i) == SFO_INCOMPLETE ); //returns "0" when cal. incomplete for channel
}
// Initialize a common seed variable MEP_ScaleFactor[0] required for all SFO functions
MEP_ScaleFactor[0] = MEP_ScaleFactor[1];
// Some useful PWM period vs Frequency values for SYSCLKOUT = 100MHz
// Period Frequency
// 1000 100 KHz
// 800 125 KHz
// 600 167 KHz
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -