⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch10_2.htm

📁 这是一套MATLAB详细手册
💻 HTM
字号:
<HTML>

<HEAD>

<TITLE> 阮奇-库达方法 </TITLE>



<META NAME="GENERATOR" CONTENT="Internet Assistant for Microsoft Word 2.0z">

</HEAD>

<BODY BACKGROUND="bg0000.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/bg0000.gif">

<H1><FONT SIZE=6 COLOR=#0000FF>10.2 阮奇-库达方法 </FONT><FONT FACE="新细明体"></FONT>

</H1>

<HR>

<P>

阮奇-库达 (Runge-Kutta) 方法是最通用的解 ODE 的方法,它可以依计算精确度的要求有低阶到高阶的各个

计算式,举例来说,一阶阮奇-库达法为

<P>

<IMG SRC="img00007-4.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img10/img00007.gif">

<P>

其实上式即是一阶的泰勒序数近似式,只不过令 <IMG SRC="img00008-4.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img10/img00008.gif">

。因为一阶阮奇-库达法 的精确度太低,所以在真正解ODE 时,最少须用二阶以上的方法。

<BR>

<P>

MATLAB应用阮奇-库达法的函数有<FONT COLOR=#FF0000>ode23</FONT>,

<FONT COLOR=#FF0000>ode45</FONT>,其中<FONT COLOR=#FF0000>ode23</FONT>是同时以二阶及三阶阮奇-库达法求解,而<FONT COLOR=#FF0000>ode45</FONT>

则是以四阶及五阶阮奇-库达法求解。其语法为<FONT COLOR=#FF0000>ode23('dy',x0,xn,y0)</FONT>,其中

<FONT COLOR=#FF0000>dy</FONT> 为ODE中的等式右边的函数(如之 前介绍的<IMG SRC="img00009-4.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img10/img00009.gif">),<FONT COLOR=#FF0000>x0</FONT>,

<FONT COLOR=#FF0000>xn</FONT> 是要解ODE的区间 [<I>x0, xn</I>]

的二个端点,<FONT COLOR=#FF0000>y0</FONT>是起始值 (<I>y0=y</I>(<I>x0</I>))。而<FONT COLOR=#FF0000>ode45</FONT>的语法

与<FONT COLOR=#FF0000>ode23</FONT>相同。 <BR>

<P>

先前的四个 ODE 的解法如下: <BR>

<P>

例一、要在区间 [2, 4] 解以下的 ODE:

<P>

<IMG SRC="img00010-4.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img10/img00010.gif">

<P>

<FONT COLOR=#FF0000>% m-function, g1.m</FONT>

<P>

<FONT COLOR=#FF0000>function dy=g1(x,y)</FONT>

<P>

<FONT COLOR=#FF0000>dy=3*x.^2;<BR>

</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; [x,num_y]=ode23('g1',2,4,0.5);</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; anl_y=x.^3-7.5;</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; plot(x,num_y,x,anl_y,'o')</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; title('Solution of g1')</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; xlabel('x'), ylabel('y=f(x)'), grid

<BR>

</FONT>

<P>

例二、要在区间 [0, 5] 解以下的 ODE:

<P>

<IMG SRC="img00011-3.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img10/img00011.gif">

<P>

<FONT COLOR=#FF0000>% m-function, g2.m</FONT>

<P>

<FONT COLOR=#FF0000>function dy=g2(x,y)</FONT>

<P>

<FONT COLOR=#FF0000>dy=-0.131*y;<BR>

</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; [x,num_y]=ode23('g2',0,5,4);</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; anl_y=4*exp(-0.131*x);</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; plot(x,num_y,x,anl_y,'o')</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; title('Solution of g2')</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; xlabel('x'), ylabel('y=f(x)'), grid

<BR>

</FONT>

<P>

例三、要在区间 [0, 2] 解以下的 ODE:

<P>

<IMG SRC="img00012-4.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img10/img00012.gif">

<P>

<FONT COLOR=#FF0000>% m-function, g3.m</FONT>

<P>

<FONT COLOR=#FF0000>function dy=g3(x,y)</FONT>

<P>

<FONT COLOR=#FF0000>dy=2*x*cos(y)^2;<BR>

</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; [x,num_y]=ode23('g3',0,2,pi/4);</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; anl_y=atan(x.*x+1);</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; plot(x,num_y,x,anl_y,'o')</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; title('Solution of g3')</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; xlabel('x'), ylabel('y=f(x)'), grid

<BR>

</FONT>

<P>

例四、要在区间 [0, 3] 解以下的 ODE:

<P>

<A NAME="work"><IMG SRC="img00013-4.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img10/img00013.gif"></A>

<P>

<FONT COLOR=#FF0000>% m-function, g4.m</FONT>

<P>

<FONT COLOR=#FF0000>function dy=g4(x,y)</FONT>

<P>

<FONT COLOR=#FF0000>dy=3*y+exp(2*x);<BR>

</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; [x,num_y]=ode23('g4',0,3,3);</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; anl_y=4*exp(3*x)-exp(2*x);</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; plot(x,num_y,x,anl_y,'o')</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; title('Solution of g4')</FONT>

<P>

<FONT COLOR=#FF0000>&gt;&gt; xlabel('x'), ylabel('y=f(x)'), grid

<BR>

</FONT>

<P>

如果将上述方法改以 <FONT COLOR=#FF0000>ode45</FONT> 计算,你可能无法察觉出其与<FONT COLOR=#FF0000>ode23</FONT>的解之间的差异,那是因为我们选的

ODE 代表的函数分布变化平缓,所以高阶方法就显现不出其优点。不过以二者在计算的误差上做比较,<FONT COLOR=#FF0000>ode45</FONT>

的误差量级会比 <FONT COLOR=#FF0000>ode23</FONT>要小。以下是几个例子:

<P>

<FONT COLOR=#FF0000>% m-function, g1.m</FONT>

<P>

<FONT COLOR=#FF0000>function dy=g1(x,y)</FONT>

<P>

<FONT COLOR=#FF0000>dy=3*x.^2;<BR>

</FONT>

<P>

<FONT COLOR=#FF0000>% m-file, odes1.m</FONT>

<P>

<FONT COLOR=#FF0000>% Solve an ode using ode23 and ode45</FONT>

<P>

<FONT COLOR=#FF0000>clg</FONT>

<P>

<FONT COLOR=#FF0000>[x1,num_y1]=ode23('g1',2,4,0.5);</FONT>

<P>

<FONT COLOR=#FF0000>anl_y1=x1.^3-7.5;</FONT>

<P>

<FONT COLOR=#FF0000>error_1=abs(anl_y1-num_y1)./abs(anl_y1); %

ode23 的计算误差</FONT>

<P>

<FONT COLOR=#FF0000>[x2,num_y2]=ode45('g1',2,4,0.5);</FONT>

<P>

<FONT COLOR=#FF0000>anl_y2=x2.^3-7.5; % 注意 x2 个数与 x1 不一定相同</FONT>

<P>

<FONT COLOR=#FF0000>error_2=abs(anl_y2-num_y2)./abs(anl_y2); %

ode45 的计算误差<BR>

</FONT>

<P>

<FONT COLOR=#FF0000>hold on</FONT>

<P>

<FONT COLOR=#FF0000>subplot(2,2,1)</FONT>

<P>

<FONT COLOR=#FF0000>plot(x1,num_y1,x1,anl_y1,'o')</FONT>

<P>

<FONT COLOR=#FF0000>title('ODE23 solution'), ylabel('y')</FONT>

<P>

<FONT COLOR=#FF0000>subplot(2,2,2)</FONT>

<P>

<FONT COLOR=#FF0000>plot(x1,error_y1) % 注意二种方法的误差</FONT>

<P>

<FONT COLOR=#FF0000>title('ODE23 error'), ylabel('y') % ode23

的误差的量级为 1.e-16</FONT>

<P>

<FONT COLOR=#FF0000>subplot(2,2,3)</FONT>

<P>

<FONT COLOR=#FF0000>plot(x2,num_y2,x2,anl_y2,'o')</FONT>

<P>

<FONT COLOR=#FF0000>title('ODE45 solution'), ylabel('y')</FONT>

<P>

<FONT COLOR=#FF0000>subplot(2,2,4)</FONT>

<P>

<FONT COLOR=#FF0000>plot(x1,error_y2)</FONT>

<P>

<FONT COLOR=#FF0000>title('ODE45 error'), ylabel('y') % ode45

的解没有误差</FONT>

<P>

<FONT COLOR=#FF0000>hold off<BR>

</FONT>

<P>

另一个例子:

<P>

<FONT COLOR=#FF0000>% m-function, g5.m</FONT>

<P>

<FONT COLOR=#FF0000>function dy=g5(x,y)</FONT>

<P>

<FONT COLOR=#FF0000>dy=-y+2*cos(x);<BR>

</FONT>

<P>

<FONT COLOR=#FF0000>% m-file, odes1.m</FONT>

<P>

<FONT COLOR=#FF0000>% Solve an ode using ode23 and ode45</FONT>

<P>

<FONT COLOR=#FF0000>clg</FONT>

<P>

<FONT COLOR=#FF0000>[x1,num_y1]=ode23('g5',0,5,1);</FONT>

<P>

<FONT COLOR=#FF0000>anl_y1=sin(x1)+cos(x1);</FONT>

<P>

<FONT COLOR=#FF0000>error_1=abs(anl_y1-num_y1)./abs(anl_y1);</FONT>

<P>

<FONT COLOR=#FF0000>[x2,num_y2]=ode45('g5',0,5,1);</FONT>

<P>

<FONT COLOR=#FF0000>anl_y2=sin(x2)+cos(x2);</FONT>

<P>

<FONT COLOR=#FF0000>error_2=abs(anl_y2-num_y2)./abs(anl_y2); 

<BR>

</FONT>

<P>

<FONT COLOR=#FF0000>hold on</FONT>

<P>

<FONT COLOR=#FF0000>subplot(2,2,1)</FONT>

<P>

<FONT COLOR=#FF0000>plot(x1,num_y1,x1,anl_y1,'o')</FONT>

<P>

<FONT COLOR=#FF0000>title('ODE23 solution'), ylabel('y')</FONT>

<P>

<FONT COLOR=#FF0000>subplot(2,2,2)</FONT>

<P>

<FONT COLOR=#FF0000>plot(x1,error_y1) % 注意二种方法的误差</FONT>

<P>

<FONT COLOR=#FF0000>title('ODE23 error'), ylabel('y') % ode23

的误差的量级为 1.e-4</FONT>

<P>

<FONT COLOR=#FF0000>subplot(2,2,3)</FONT>

<P>

<FONT COLOR=#FF0000>plot(x2,num_y2,x2,anl_y2,'o')</FONT>

<P>

<FONT COLOR=#FF0000>title('ODE45 solution'), ylabel('y')</FONT>

<P>

<FONT COLOR=#FF0000>subplot(2,2,4)</FONT>

<P>

<FONT COLOR=#FF0000>plot(x1,error_y2)</FONT>

<P>

<FONT COLOR=#FF0000>title('ODE45 error'), ylabel('y') % ode45

的误差的量级为 1.e-6</FONT>

<P>

<FONT COLOR=#FF0000>hold off<BR>

</FONT>

<HR>

<P>

<A HREF="ch10_1.htm" tppabs="http://166.111.167.223/computer/cai/matlabjc/ch10_1.htm"><IMG SRC="lastpage.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/lastpage.gif" BORDER=0></A>

<A HREF="ch10_3.htm" tppabs="http://166.111.167.223/computer/cai/matlabjc/ch10_3.htm"><IMG SRC="nextpage-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/nextpage.gif" BORDER=0 HSPACE=10></A>

<A HREF="index.html" tppabs="http://166.111.167.223/computer/cai/matlabjc/index.html"><IMG SRC="outline-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/outline.gif" BORDER=0 HSPACE=6></A>

<BR>

<FONT SIZE=2 COLOR=#FF00FF>上一页 下一页 讲义大纲 </FONT>

</BODY>

</HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -