📄 onenand.c
字号:
#if USE_DMA
if (data_write&1)
dma_memcpy( (U32)Address, __OND_DataRAM1_BASE, 0, DATABUFFERSIZE );
else
dma_memcpy( (U32)Address, __OND_DataRAM0_BASE, 0, DATABUFFERSIZE );
#else
if (data_write&1)
memcpy( (U32 *)__OND_DataRAM1_BASE, Address, DATABUFFERSIZE);
else
memcpy( (U32 *)__OND_DataRAM0_BASE, Address, DATABUFFERSIZE);
#endif
Address+=(DATABUFFERSIZE>>2);
data_write++;
}
}
if (data_write > 1) {
while (!(rOND_INT_STATUS & (1<<15)));
if (rOND_CON_STATUS & (1<<10))
printf("ECC Fail.\n");
else
data_program++;
}
}
}
//======================== [ OneNAND test code ] ===========================
void OneNAND_ReadID( void)
{
printf("\n\n< Read OneNAND information >\n");
printf("Manufacturer ID : 0x%02x\n",rOND_MANU);
printf("Device ID : 0x%02x\n",rOND_DEV);
printf("Version ID : 0x%02x\n",rOND_VER);
printf("Data buffer size : %d KB\n",((rOND_DBUFSIZE<<1)/(rOND_BUFAMOUNT>>8))>>10);
printf("Boot buffer size : %d KB\n",((rOND_BBUFSIZE<<1)/(rOND_BUFAMOUNT&0xff))>>10);
printf("Amount of D/B buffers : %d, %d\n",rOND_BUFAMOUNT>>8,rOND_BUFAMOUNT&0xff);
printf("Technology : 0x%02x\n\n", rOND_TECH);
}
void OneNAND_Program( void)
{
U16 block;
U32 size;
printf("\nOneNAND block program from [0x%08x]\n",(_NONCACHE_STARTADDRESS+0x00500000));
printf("Enter block # to program : ");
block = GetIntNum();
printf("Enter size to program : ");
size = GetIntNum();
OND_write( (U32 *)(_NONCACHE_STARTADDRESS+0x00500000), size, block);
printf("Program complete.\n");
}
void OneNAND_Read_Page( void)
{
U16 block=0;
U16 page=0;
U32 i;
U32 *Addr;
printf("\nOneNAND block read\n");
printf("Enter block # to read : ");
block = GetIntNum();
printf("Enter page # to read : ");
page = GetIntNum();
if (OND_page_load(block,page)==0) {
Addr=(U32 *)__OND_DataRAM0_BASE;
for(i=0;i<DATABUFFERSIZE;i+=sizeof(U32)) {
if ((i&0x1f)==0)
printf("\n%08x : ",i);
printf("%08x ",*Addr++);
}
putchar('\n');
}
}
void OneNAND_Write_Page( void)
{
U16 block=0;
U16 page=0;
printf("\nOneNAND block write\n");
printf("Enter block # to write : ");
block = GetIntNum();
printf("Enter page # to write : ");
page = GetIntNum();
if (OND_page_program(block,page)==0)
printf("Block %d, page %d was writed.\n",block,page);
printf("\n");
}
void OneNAND_Erase_All( void)
{
U16 block;
printf("\nOneNAND all block erase\n");
for(block=0;block<1024;block++) {
OND_unlock_block( block);
OND_erase_block( block);
if ((block&0x3f)==0)
printf("[%d]",block);
}
printf("\nAll block was erased.\n");
printf("\n");
}
void OneNAND_Erase_Block( void)
{
U16 block=0;
printf("\nOneNAND block erase\n");
printf("Enter block # to erase : ");
block = GetIntNum();
OND_unlock_block( block);
if (OND_erase_block( block)==0)
printf("Block %d was erased.\n",block);
printf("\n");
}
void OneNAND_Unlock_Block( void)
{
U16 block=0;
printf("\nOneNAND block unlock\n");
printf("Enter block # to unlock : ");
block = GetIntNum();
OND_unlock_block( block);
printf("\n");
}
void OneNAND_Lock_Block( void)
{
U16 block=0;
printf("\nOneNAND block lock\n");
printf("Enter block # to lock : ");
block = GetIntNum();
OND_lock_block( block);
printf("\n");
}
void SMC_Config4OneNAND(U32 nBank)
{
U32 sel_sync = 2;
U32 sel_burst = 4;
U32 burst_mode = 1;
U32 mux_mode = 0;
U16 sysconfig1;
volatile SMC_REGS *pSmcRegs;
pSmcRegs = (volatile SMC_REGS *)(SMC_REG_BASE+SMC_REG_OFFSET*nBank);
printf("Select OneNAND interface mode, Demuxed mode(0-D)/Muxed mode(1) : ");
mux_mode = GetIntNum();
if (mux_mode == 1)
rSMBONETYPER |= (1<<nBank); // muxed mode
else
rSMBONETYPER &= ~(1<<nBank); // demuxed mode
printf("Select sync mode, Synchronous(1)/Asynchronous(2-D) : ");
sel_sync = GetIntNum();
if (sel_sync == 1)
{
printf("Select burst mode, no burst(0-D)/4-words(1)/8-words(2)/16-words(3)/Continuous(4) : ");
sel_burst = GetIntNum();
burst_mode = 1;
if ( (sel_burst == (U32)(-1)) || (sel_burst == 0) )
{
sel_burst = 4;
burst_mode = 0; // default no burst
}
}
// defualt setting for reading correct rOND_SYS_CONFIG1
pSmcRegs->rSmbWstRdr = 3; // read wait state. [4:0] 1 ~ 10. only 4 @ 50MHz(Mux). sync burst only 4
pSmcRegs->rSmbWstWrr = 3; // write wait state. [4:0] 1 ~ 10. min 3 @ 50MHz
pSmcRegs->rSmbWstOenr = 2; // OE assertion delay. [3:0] 1 ~ 2. min 3 @ 50MHz
pSmcRegs->rSmbWstWenr = 2; // WE assertion delay. [3:0] 1 ~ 3. min 3 @ 50MHz
sysconfig1=rOND_SYS_CONFIG1; // reading
printf("rOND_SYS_CONFIG1 = 0x%x \n", sysconfig1);
// ensure that ther are no memory transfers.
rCLKDIV0 = (rCLKDIV0 & ~(1<<3)) | (1<<3); // select HALFHCLK : 0=HCLK, 1=HCLK/2
rSMCCR = (rSMCCR & ~(3<<1)) | (1<<1)|(1); // SMC MemClkRatio setting should be equal HALFHCLK of CLKDIV0
pSmcRegs->rSmbIdCyr = 0;
printf("rCLKDIV0 = 0x%x\n", rCLKDIV0);
printf("rSMBIDCYR%d = 0x%x\n", nBank, pSmcRegs->rSmbIdCyr);
// wait 4 SMC clocks
switch(sel_sync) {
case 1: // sync.
printf("rSMBCR%d = 0x%x \n", nBank, pSmcRegs->rSmbCr);
// rOND_SYS_CONFIG1
// [15] : sync(1), async(0),
// [12:14] : Burst read latency. same as WSTRD value in demux.
// [9:11] : Continuous(0), 4word(1), 8word(2), 16word(3), 32word(4) - only burst
rOND_SYS_CONFIG1 = (sysconfig1& ~(0x7f<<9))|(1<<15)|(3<<12)|((sel_burst%4)<<9);
Delay(1);
printf("sync = %d, sel burst = %d, burst mode = %d\n", sel_sync, sel_burst, burst_mode);
// rSMBCR0
// [10:11] : 4word(0), 8word(1), 16word(2), continuous(3) - only burst
// [9] : sync(1), async(0)
// [8] : burst(1), no burst(0)
pSmcRegs->rSmbCr = (pSmcRegs->rSmbCr & ~((0xf<<8)|(0xf<<16)|(1<<14)|0x3))
|((sel_burst-1)<<10)|(1<<9)|(burst_mode<<8) // set SSMC as read burst.
|(0<<18)|(0<<17)|(0<<16) // set SSMC write
|(0<<14)|(0<<1)|(1); // caution! SMWAIT polarity setting. now active low.
pSmcRegs->rSmbWstBrdr = 0;
printf("rSMBONETYPER = 0x%x\n",rSMBONETYPER);
printf("\nSynchronous access mode \n");
if (mux_mode)
{
pSmcRegs->rSmbWstRdr = 3; // read wait state. [4:0] 1 ~ 10. only 4 @ 50MHz(Mux). sync burst only 4
pSmcRegs->rSmbWstWrr = 3; // write wait state. [4:0] 1 ~ 10. min 3 @ 50MHz
pSmcRegs->rSmbWstOenr = 2; // OE assertion delay. [3:0] 1 ~ 2. min 3 @ 50MHz
pSmcRegs->rSmbWstWenr = 2; // WE assertion delay. [3:0] 1 ~ 3. min 3 @ 50MHz
}
else // previous setting 3,3,1,2
{
pSmcRegs->rSmbWstRdr = 3; // read wait state. [4:0] 1 ~ 10. only 4 @ 50MHz(Mux). sync burst only 4
pSmcRegs->rSmbWstWrr = 3; // write wait state. [4:0] 1 ~ 10. min 3 @ 50MHz
pSmcRegs->rSmbWstOenr = 2; // OE assertion delay. [3:0] 1 ~ 2. min 3 @ 50MHz
pSmcRegs->rSmbWstWenr = 2; // WE assertion delay. [3:0] 1 ~ 3. min 3 @ 50MHz
}
break;
default: // async.
rOND_SYS_CONFIG1 = (sysconfig1& ~(0xf<<12))|(0<<15)|(3<<12);
pSmcRegs->rSmbCr = (pSmcRegs->rSmbCr & ~(0xf<<8))|(0<<10)|(0<<9)|(0<<8); // set SSMC as async read.
printf("Asynchronous access mode \n");
// defualt setting 3,3,2,3
pSmcRegs->rSmbWstRdr = 3; // read wait state. [4:0] 1 ~ 10. min 3 @ 50MHz(Mux)
pSmcRegs->rSmbWstWrr = 3; // write wait state. [4:0] 1 ~ 10. min 3 @ 50MHz
pSmcRegs->rSmbWstOenr = 2; // OE assertion delay. [3:0] 1 ~ 2. min 2 @ 50MHz
pSmcRegs->rSmbWstWenr = 2; // WE assertion delay. [3:0] 1 ~ 3. min 3 @ 50MHz
break;
}
sysconfig1=rOND_SYS_CONFIG1;
printf("rOND_SYS_CONFIG1 = 0x%x \n", sysconfig1);
printf("rSMBCR%d = 0x%x \n", nBank, pSmcRegs->rSmbCr);
printf("rSMBWSTRDR%d = 0x%x\n", nBank, pSmcRegs->rSmbWstRdr);
printf("rSMBWSTWRR%d = 0x%x\n", nBank, pSmcRegs->rSmbWstWrr);
printf("rSMBWSTOENR%d = 0x%x\n", nBank, pSmcRegs->rSmbWstOenr);
printf("rSMBWSTWENR%d = 0x%x\n\n", nBank, pSmcRegs->rSmbWstWenr);
// rSMCCR = (1<<1)|(1<<0);
}
void OneNAND_Performance_Test(void)
{
U16 block=0;
U32 size=0;
U32 i;
U32 *SrcAddr, *DstAddr;
U32 t_cnt=1;
U8 d_correct=0;
#if USE_DMA
U8 dma_burst;
U8 dma_tw;
#endif
SetResStopwatch(1000); // stopwatch
// rGPDCON = rGPDCON & ~(3<<22) | (1<<22); // GPD11 output setn - B'd TPD01
// rGPDDAT |= (1<<11); // high
// SSMC parameter value setting
SMC_Config4OneNAND(OND_BANK);
printf("\nrOND_SYS_CONFIG1 = 0x%x \n", rOND_SYS_CONFIG1);
printf("rOND_DBUFSIZE = 0x%x \n", rOND_DBUFSIZE);
printf("rOND_BBUFSIZE = 0x%x \n", rOND_BBUFSIZE);
printf("rOND_BUFAMOUNT = 0x%x \n", rOND_BUFAMOUNT);
printf("\n Enter start block # to write [D:700]: ");
block = GetIntNum();
printf(" Enter data size # to write [D:2MB, MAX:10MB]: ");
size = GetIntNum();
#if USE_DMA
printf(" Enter dma transfer width [0]1byte, [1]2byte, [2]4byte : ");
dma_tw = (U8)GetIntNum();
printf("\n Enter dma burst size [0]1, [1]4, [2]8, [3]16, [4]32, [5]64, [6]128, [7]256 : ");
dma_burst = (U8)GetIntNum();
set_dma_control(dma_burst, dma_tw);
#endif
// Default test block variable setting
if ( (block == (U16)(-1)) || (block<1) )
block = 700; // start block
if ( (size == (U32)(-1)) || (size<2048) )
size = 0x200000; // 16 blocks = 2MB
SrcAddr = (U32 *)(_NONCACHE_STARTADDRESS+0x00500000);
printf(" Start block : %d, Data size : %d Bytes\n", block, size);
// fill buffer data
for (i=0; i<size ;i+=4)
*SrcAddr++ = i;
// rGPDDAT &= ~(1<<11); // low
// Delay(1);
// rGPDDAT |= (1<<11); // high
// write test by block unit(internally page unit), Write-While-Program Operation
StartStopwatch();
OND_write( (U32 *)(_NONCACHE_STARTADDRESS+0x00500000), size, block);
t_cnt = EndStopwatch();
// rGPDDAT &= ~(1<<11); // low
// Delay(2);
// rGPDDAT |= (1<<11); // high
printf("\n %d Bytes WRITE time by block unit : %d us", size, t_cnt);
printf("\n %.3f Byte/sec\n", (float)size/(float)t_cnt*1000000 ); // for us order
printf("Press any key to continue\n");
getchar();
// read test by block unit(internally page unit), Read-While-Load Operation
StartStopwatch();
OND_read( (U32 *)(_NONCACHE_STARTADDRESS+0x01000000), size, block);
t_cnt = EndStopwatch();
printf("\n %d Bytes READ time by block unit : %d us", size, t_cnt);
printf("\n %.3f Byte/sec\n", (float)size/(float)t_cnt*1000000 );
// verify data
SrcAddr = (U32 *)(_NONCACHE_STARTADDRESS+0x00500000);
DstAddr = (U32 *)(_NONCACHE_STARTADDRESS+0x01000000);
for (i=0; i<size ;i+=4)
if (*SrcAddr++ != *DstAddr++)
d_correct = 1;
if(d_correct == 1)
printf("\n Copied data error!! \n\n");
else printf("\n Copied data OK!! \n\n");
}
void OneNAND_TimingCheck( void)
{
U32 R1, R2, R3, R4, W1, W2, W3, W4;
volatile SMC_REGS *pSmcRegs;
pSmcRegs = (volatile SMC_REGS *)(SMC_REG_BASE+SMC_REG_OFFSET*OND_BANK);
printf("Read, write test \n");
pSmcRegs->rSmbWstRdr = 4; // read wait state. [4:0] 1 ~ 10. only 4 @ 50MHz(Mux). sync burst only 4
pSmcRegs->rSmbWstWrr = 3; // write wait state. [4:0] 1 ~ 10. min 3 @ 50MHz
pSmcRegs->rSmbWstOenr = 1; // OE assertion delay. [3:0] 1 ~ 2. min 3 @ 50MHz
pSmcRegs->rSmbWstWenr = 3; // WE assertion delay. [3:0] 1 ~ 3. min 3 @ 50MHz
R1 = rOND_DEV; // read
rOND_START_ADDR1 = 0x8355; // write, addr1 is effective about 0~8,15bit
W1 = rOND_START_ADDR1; // read
pSmcRegs->rSmbWstRdr = 10; // read wait state. [4:0] 1 ~ 10. only 4 @ 50MHz(Mux). sync burst only 4
pSmcRegs->rSmbWstWrr = 10; // write wait state. [4:0] 1 ~ 10. min 3 @ 50MHz
pSmcRegs->rSmbWstOenr = 5; // OE assertion delay. [3:0] 1 ~ 2. min 3 @ 50MHz
pSmcRegs->rSmbWstWenr = 5; // WE assertion delay. [3:0] 1 ~ 3. min 3 @ 50MHz
R2 = rOND_DEV; // read
rOND_START_ADDR1 = 0x8355; // write
W2 = rOND_START_ADDR1; // read
pSmcRegs->rSmbWstRdr = 4; // read wait state. [4:0] 1 ~ 10. only 4 @ 50MHz(Mux). sync burst only 4
pSmcRegs->rSmbWstWrr = 3; // write wait state. [4:0] 1 ~ 10. min 3 @ 50MHz
pSmcRegs->rSmbWstOenr = 2; // OE assertion delay. [3:0] 1 ~ 2. min 3 @ 50MHz
pSmcRegs->rSmbWstWenr = 2; // WE assertion delay. [3:0] 1 ~ 3. min 3 @ 50MHz
R3 = rOND_DEV; // read
rOND_START_ADDR1 = 0x8355; // write
W3 = rOND_START_ADDR1; // read
pSmcRegs->rSmbWstRdr = 7; // read wait state. [4:0] 1 ~ 10. only 4 @ 50MHz(Mux). sync burst only 4
pSmcRegs->rSmbWstWrr = 7; // write wait state. [4:0] 1 ~ 10. min 3 @ 50MHz
pSmcRegs->rSmbWstOenr = 1; // OE assertion delay. [3:0] 1 ~ 2. min 3 @ 50MHz
pSmcRegs->rSmbWstWenr = 3; // WE assertion delay. [3:0] 1 ~ 3. min 3 @ 50MHz
R4 = rOND_DEV; // read
rOND_START_ADDR1 = 0x8355; // write
W4 = rOND_START_ADDR1; // read
printf("R1 = 0x%x, R2 = 0x%x, R3 = 0x%x, R4 = 0x%x\n",R1,R2,R3,R4);
printf("W1 = 0x%x, W2 = 0x%x, W3 = 0x%x, W4 = 0x%x\n",W1,W2,W3,W4);
printf("\n\n< Read OneNAND information >\n");
printf("Manufacturer ID : 0x%02x\n",rOND_MANU);
printf("Device ID : 0x%02x\n",rOND_DEV);
printf("Version ID : 0x%02x\n",rOND_VER);
printf("Data buffer size : %d KB\n",((rOND_DBUFSIZE<<1)/(rOND_BUFAMOUNT>>8))>>10);
printf("Boot buffer size : %d KB\n",((rOND_BBUFSIZE<<1)/(rOND_BUFAMOUNT&0xff))>>10);
printf("Amount of D/B buffers : %d, %d\n",rOND_BUFAMOUNT>>8,rOND_BUFAMOUNT&0xff);
printf("Technology : 0x%02x\n\n", rOND_TECH);
}
void OneNAND_Burst_Read( void)
{
U16 block=0;
U16 page=0;
U32 i;
U32 *Addr;
printf("\nOneNAND block read\n");
printf("Enter block # to read : ");
block = GetIntNum();
printf("Enter page # to read : ");
page = GetIntNum();
if (OND_page_load(block,page)==0) {
memcpy( (U32 *)(_NONCACHE_STARTADDRESS+0x01000000), (U32 *)__OND_DataRAM0_BASE, DATABUFFERSIZE);
Addr=(U32 *)(_NONCACHE_STARTADDRESS+0x01000000);
for(i=0;i<DATABUFFERSIZE;i+=sizeof(U32)) {
if ((i&0x1f)==0)
printf("\n%08x : ",i);
printf("%08x ",*Addr++);
}
putchar('\n');
}
}
// temporary
void set_dma_control(U8 burst, U8 tw)
{
return;
}
void dma_memcpy(U32 s_addr, U32 d_addr, U32 N_LLI, U32 trans_size)
{
return;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -