📄 cmd_nand.c
字号:
/*
* Driver for NAND support, Rick Bronson
* borrowed heavily from:
* (c) 1999 Machine Vision Holdings, Inc.
* (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "main.h"
#include "com.h"
#include "NandFlash.h"
#include "nand.h"
#include "nand_ids.h"
#include "jffs2.h"
//**************************************************
// Macro definition for NandFlash
//**************************************************
#define min(x,y) (x < y)?(x):(y)
#define max(x,y) (x > y)?(x):(y)
#define ROUND_DOWN(value,boundary) ((value) & (~((boundary)-1)))
/*
* Definition of the out of band configuration structure
*/
struct nand_oob_config {
int ecc_pos[6]; /* position of ECC bytes inside oob */
int badblock_pos; /* position of bad block flag inside oob -1 = inactive */
int eccvalid_pos; /* position of ECC valid flag inside oob -1 = inactive */
} oob_config = { {0}, 0, 0};
#undef NAND_DEBUG
#undef PSYCHO_DEBUG
/* ****************** WARNING *********************
* When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will
* erase (or at least attempt to erase) blocks that are marked
* bad. This can be very handy if you are _sure_ that the block
* is OK, say because you marked a good block bad to test bad
* block handling and you are done testing, or if you have
* accidentally marked blocks bad.
*
* Erasing factory marked bad blocks is a _bad_ idea. If the
* erase succeeds there is no reliable way to find them again,
* and attempting to program or erase bad blocks can affect
* the data in _other_ (good) blocks.
*/
#define ALLOW_ERASE_BAD_DEBUG 0
#undef CONFIG_MTD_NAND_ECC /* enable ECC */
#undef CONFIG_MTD_NAND_ECC_JFFS2
/*
* Function Prototypes
*/
void nand_print(struct nand_chip *nand);
int nand_rw (struct nand_chip* nand, int cmd,
size_t start, size_t len,
size_t * retlen, u_char * buf);
int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean);
static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
size_t * retlen, u_char *buf, u_char *ecc_code);
static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
size_t * retlen, const u_char * buf, u_char * ecc_code);
void nand_print_bad(struct nand_chip *nand);
static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
size_t * retlen, u_char * buf);
static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
size_t * retlen, const u_char * buf);
static int NanD_WaitReady(struct nand_chip *nand, int ale_wait);
#ifdef CONFIG_MTD_NAND_ECC
static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc);
static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code);
#endif
struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}};
/* Current NAND Device */
int curr_device = -1;
/* ------------------------------------------------------------------------- */
static int NanD_WaitReady(struct nand_chip *nand, int ale_wait)
{
/* This is inline, to optimise the common case, where it's ready instantly */
int ret = 0;
#ifdef NAND_NO_RB /* in config file, shorter delays currently wrap accesses */
if(ale_wait)
NAND_WAIT_READY(nand); /* do the worst case 25us wait */
else
udelay(10);
#else /* has functional r/b signal */
NAND_WAIT_READY(nand);
#endif
return ret;
}
/* NanD_Command: Send a flash command to the flash chip */
static __inline int NanD_Command(struct nand_chip *nand, unsigned char command)
{
unsigned long nandptr = nand->IO_ADDR;
unsigned short wCommand = 0;
/* Assert the CLE (Command Latch Enable) line to the flash chip */
NAND_CTL_SETCLE(nandptr);
/* Send the command */
if (nand->bus_width_16bit)
{
wCommand = (unsigned short)command;
WRITE_NAND_COMMAND16(command, nandptr);
}
else
WRITE_NAND_COMMAND(command, nandptr);
/* Lower the CLE line */
NAND_CTL_CLRCLE(nandptr);
#ifdef NAND_NO_RB
if(command == NAND_CMD_RESET){
u_char ret_val;
NanD_Command(nand, NAND_CMD_STATUS);
do{
ret_val = READ_NAND(nandptr);/* wait till ready */
} while((ret_val & 0x40) != 0x40);
}
#endif
return NanD_WaitReady(nand, 0);
}
/* NanD_Address: Set the current address for the flash chip */
static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs)
{
unsigned long nandptr;
int i;
unsigned short wMask = 0, wOffset = 0;
nandptr = nand->IO_ADDR;
/* Assert the ALE (Address Latch Enable) line to the flash chip */
NAND_CTL_SETALE(nandptr);
/* Send the address */
/* Devices with 256-byte page are addressed as:
* Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
* there is no device on the market with page256
* and more than 24 bits.
* Devices with 512-byte page are addressed as:
* Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
* 25-31 is sent only if the chip support it.
* bit 8 changes the read command to be sent
* (NAND_CMD_READ0 or NAND_CMD_READ1).
*/
if (nand->bus_width_16bit){
for (i=0; i<nand->page_shift; i++)
wMask |= 1 << i;
wOffset = ofs & wMask;
}
if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE)
for (i = 0; i < nand->columnadrlen; i++){
if (nand->bus_width_16bit)
{
WRITE_NAND_ADDRESS16(wOffset & 0x00FF, nandptr);
} else
WRITE_NAND_ADDRESS(ofs, nandptr);
if ((nand->columnadrlen != 1) && (i < nand->columnadrlen - 1))
wOffset = wOffset >> 8;
}
ofs = ofs >> nand->page_shift;
if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE)
for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8){
if (nand->bus_width_16bit)
{
wOffset = ofs;
WRITE_NAND_ADDRESS16(wOffset & 0x00FF, nandptr);
} else
WRITE_NAND_ADDRESS(ofs, nandptr);
}
/* Lower the ALE line */
NAND_CTL_CLRALE(nandptr);
/* Wait for the chip to respond */
return NanD_WaitReady(nand, 1);
}
/* NanD_SelectChip: Select a given flash chip within the current floor */
static __inline int NanD_SelectChip(struct nand_chip *nand, int chip)
{
/* Wait for it to be ready */
return NanD_WaitReady(nand, 0);
}
/* ------------------------------------------------------------------------- */
/* returns 0 if block containing pos is OK:
* valid erase block and
* not marked bad, or no bad mark position is specified
* returns 1 if marked bad or otherwise invalid
*/
int check_block(struct nand_chip* nand, unsigned long pos)
{
int retlen;
uint8_t oob_data;
int page0 = pos & (-nand->erasesize);
int page1 = page0 + nand->oobblock;
int badpos = oob_config.badblock_pos;
if (pos >= nand->totlen)
return 1;
if (badpos < 0)
return 0; /* no way to check, assume OK */
/* Note - bad block marker can be on first or second page */
if (nand_read_oob(nand, page0 + badpos, 1, (size_t *)&retlen, &oob_data) ||
oob_data != 0xff ||
nand_read_oob(nand, page1 + badpos, 1, (size_t *)&retlen, &oob_data) ||
oob_data != 0xff)
return 1;
return 0;
}
/* print bad blocks in NAND flash */
void nand_print_bad(struct nand_chip* nand)
{
unsigned long pos;
for (pos = 0; pos < nand->totlen; pos += nand->erasesize) {
if (check_block(nand, pos))
{
#ifdef NAND_DEBUG
printf(" 0x%8.8lx\n", pos);
#endif
}
}
#ifdef NAND_DEBUG
puts("\n");
#endif
}
/* cmd: 0: NANDRW_WRITE write, fail on bad block
* 1: NANDRW_READ read, fail on bad block
* 2: NANDRW_WRITE | NANDRW_JFFS2 write, skip bad blocks
* 3: NANDRW_READ | NANDRW_JFFS2 read, data all 0xff for bad blocks
* 7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks
*/
int nand_rw (struct nand_chip* nand, int cmd,
size_t start, size_t len,
size_t * retlen, u_char * buf)
{
int ret = 0, n, total = 0;
char eccbuf[6];
/* eblk (once set) is the start of the erase block containing the
* data being processed.
*/
unsigned long eblk = ~0; /* force mismatch on first pass */
unsigned long erasesize = nand->erasesize;
while (len) {
if ((start & (-erasesize)) != eblk) {
/* have crossed into new erase block, deal with
* it if it is sure marked bad.
*/
eblk = start & (-erasesize); /* start of block */
if (check_block(nand, eblk)) {
if (cmd == (NANDRW_READ | NANDRW_JFFS2)) {
while (len > 0 &&
start - eblk < erasesize) {
*(buf++) = 0xff;
++start;
++total;
--len;
}
continue;
}
else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) {
start += erasesize;
continue;
}
else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) {
/* skip bad block */
start += erasesize;
continue;
}
else {
ret = 1;
break;
}
}
}
/* The ECC will not be calculated correctly if
less than 512 is written or read */
/* Is request at least 512 bytes AND it starts on a proper boundary */
#ifdef NAND_DEBUG
if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200)){
printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundary\n");
}
#endif
if (cmd & NANDRW_READ)
ret = nand_read_ecc(nand, start,
min(len, eblk + erasesize - start),
(size_t *)&n, (u_char*)buf, (u_char *)eccbuf);
else
ret = nand_write_ecc(nand, start,
min(len, eblk + erasesize - start),
(size_t *)&n, (u_char*)buf, (u_char *)eccbuf);
if (ret)
break;
start += n;
buf += n;
total += n;
len -= n;
}
if (retlen)
*retlen = total;
return ret;
}
void nand_print(struct nand_chip *nand)
{
if (nand->numchips > 1) {
#ifdef NAND_DEBUG
printf("%s at 0x%lx,\n"
"\t %d chips %s, size %d MB, \n"
"\t total size %ld MB, sector size %ld kB\n",
nand->name, nand->IO_ADDR, nand->numchips,
nand->chips_name, 1 << (nand->chipshift - 20),
nand->totlen >> 20, nand->erasesize >> 10);
#endif
}
else {
#ifdef NAND_DEBUG
printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR);
// print_size(nand->totlen, ", ");
// print_size(nand->erasesize, " sector)\n");
#endif
}
}
/* ------------------------------------------------------------------------- */
/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */
static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip)
{
int mfr, id, i;
NAND_ENABLE_CE(nand); /* set pin low */
/* Reset the chip */
if (NanD_Command(nand, NAND_CMD_RESET)) {
#ifdef NAND_DEBUG
printf("NanD_Command (reset) for %d,%d returned true\n",
floor, chip);
#endif
NAND_DISABLE_CE(nand); /* set pin high */
return 0;
}
// Avoid some identification problems
NanD_WaitReady(nand, 0);
/* Read the NAND chip ID: 1. Send ReadID command */
if (NanD_Command(nand, NAND_CMD_READID)) {
#ifdef NAND_DEBUG
printf("NanD_Command (ReadID) for %d,%d returned true\n",
floor, chip);
#endif
NAND_DISABLE_CE(nand); /* set pin high */
return 0;
}
/* Read the NAND chip ID: 2. Send address byte zero */
NanD_Address(nand, ADDR_COLUMN, 0);
/* Read the manufacturer and device id codes from the device */
mfr = READ_NAND(nand->IO_ADDR);
id = READ_NAND(nand->IO_ADDR);
NAND_DISABLE_CE(nand); /* set pin high */
/* No response - return failure */
if (mfr == 0xff || mfr == 0) {
#ifdef NAND_DEBUG
printf("NanD_Command (ReadID) got %d %d\n", mfr, id);
#endif
return 0;
}
/* Check it's the same as the first chip we identified.
* M-Systems say that any given nand_chip device should only
* contain _one_ type of flash part, although that's not a
* hardware restriction. */
if (nand->mfr) {
if (nand->mfr == mfr && nand->id == id)
return 1; /* This is another the same the first */
#ifdef NAND_DEBUG
else
printf("Flash chip at floor %d, chip %d is different:\n",
floor, chip);
#endif
}
/* Print and store the manufacturer and ID codes. */
for (i = 0; nand_flash_ids[i].name != NULL; i++) {
if (mfr == nand_flash_ids[i].manufacture_id &&
id == nand_flash_ids[i].model_id) {
sprintf(message, "NandFlash chip found:\n\r Manufacturer ID: 0x%2.2X, Chip ID: 0x%2.2X (%s)\n\r",
mfr, id, nand_flash_ids[i].name);
AT91F_DBGU_Printk(message);
#ifdef NAND_DEBUG
printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, "
"Chip ID: 0x%2.2X (%s)\n", mfr, id,
nand_flash_ids[i].name);
#endif
if (!nand->mfr)
{
nand->mfr = mfr;
nand->id = id;
nand->chipshift = nand_flash_ids[i].chipshift;
nand->pagesize = nand_flash_ids[i].pagesize;
nand->bus_width_16bit = nand_flash_ids[i].buswidth_16bit;
nand->eccsize = 256;
if (nand->pagesize == 256)
{
nand->oobblock = 256;
nand->oobsize = 8;
nand->page_shift = 8;
nand->large_blocks = 0;
}
else if (nand->pagesize == 512)
{
nand->oobblock = 512;
nand->oobsize = 16;
nand->page_shift = 9;
nand->large_blocks = 0;
}
else // Large Blocks Micron
{
nand->oobblock = 2048;
nand->oobsize = 64;
nand->page_shift = 11;
nand->large_blocks = 1;
oob_config.badblock_pos = nand->oobblock;
if (nand->bus_width_16bit)
oob_config.badblock_pos >>= 1;
}
nand->pageadrlen = nand_flash_ids[i].pageadrlen;
nand->columnadrlen = nand_flash_ids[i].columnadrlen;
nand->erasesize = nand_flash_ids[i].erasesize;
nand->chips_name = nand_flash_ids[i].name;
return 1;
}
return 0;
}
}
#ifdef NAND_DEBUG
/* We haven't fully identified the chip. Print as much as we know. */
printf("Unknown flash chip found: %2.2X %2.2X\n",
id, mfr);
#endif
return 0;
}
/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */
static void NanD_ScanChips(struct nand_chip *nand)
{
int floor, chip;
int numchips[NAND_MAX_FLOORS];
int maxchips = NAND_MAX_CHIPS;
int ret = 1;
nand->numchips = 0;
nand->mfr = 0;
nand->id = 0;
/* For each floor, find the number of valid chips it contains */
for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
ret = 1;
numchips[floor] = 0;
for (chip = 0; chip < maxchips && ret != 0; chip++) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -