⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ogretriangle.cpp

📁 opcode是功能强大
💻 CPP
字号:
///////////////////////////////////////////////////////////////////////////////
///  @file OgreTriangle.cpp
///  @brief <TODO: insert file description here>
///
///  @author The OgreOpcode Team @date 28-05-2005
///
///////////////////////////////////////////////////////////////////////////////
///
///  This file is part of OgreOpcode.
///
///  A lot of the code is based on the Nebula Opcode Collision module, see docs/Nebula_license.txt
///
///  OgreOpcode is free software; you can redistribute it and/or
///  modify it under the terms of the GNU Lesser General Public
///  License as published by the Free Software Foundation; either
///  version 2.1 of the License, or (at your option) any later version.
///
///  OgreOpcode is distributed in the hope that it will be useful,
///  but WITHOUT ANY WARRANTY; without even the implied warranty of
///  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
///  Lesser General Public License for more details.
///
///  You should have received a copy of the GNU Lesser General Public
///  License along with OgreOpcode; if not, write to the Free Software
///  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
///
///////////////////////////////////////////////////////////////////////////////

#include "OgreOpcodeMath.h"
#include "OgreTriangle.h"
#include "OgreCapsule.h"

using namespace Ogre;
namespace OgreOpcode
{
	namespace Details
    {
		//------------------------------------------------------------------------
		Real Triangle::squaredDistance( const Vector3& point ) const
		{
			// edge pre-computing
			Vector3 e0 = vertices[1] - vertices[0];
			Vector3 e1 = vertices[2] - vertices[1];

			Vector3 kDiff = e0 - point;
			Real fA00 = e0.squaredLength();
			Real fA01 = e0 | e1;
			Real fA11 = e1.squaredLength();
			Real fB0 = kDiff.dotProduct(e0);
			Real fB1 = kDiff.dotProduct(e1);
			Real fC = kDiff.squaredLength();
			Real fDet = Math::Abs(fA00*fA11-fA01*fA01);
			Real fS = fA01*fB1-fA11*fB0;
			Real fT = fA01*fB0-fA00*fB1;
			Real fSqrDist;

			if ( fS + fT <= fDet )
			{
				if ( fS < (Real)0.0 )
				{
					if ( fT < (Real)0.0 )  // region 4
					{
						if ( fB0 < (Real)0.0 )
						{
							fT = (Real)0.0;
							if ( -fB0 >= fA00 )
							{
								fS = (Real)1.0;
								fSqrDist = fA00+((Real)2.0)*fB0+fC;
							}
							else
							{
								fS = -fB0/fA00;
								fSqrDist = fB0*fS+fC;
							}
						}
						else
						{
							fS = (Real)0.0;
							if ( fB1 >= (Real)0.0 )
							{
								fT = (Real)0.0;
								fSqrDist = fC;
							}
							else if ( -fB1 >= fA11 )
							{
								fT = (Real)1.0;
								fSqrDist = fA11+((Real)2.0)*fB1+fC;
							}
							else
							{
								fT = -fB1/fA11;
								fSqrDist = fB1*fT+fC;
							}
						}
					}
					else  // region 3
					{
						fS = (Real)0.0;
						if ( fB1 >= (Real)0.0 )
						{
							fT = (Real)0.0;
							fSqrDist = fC;
						}
						else if ( -fB1 >= fA11 )
						{
							fT = (Real)1.0;
							fSqrDist = fA11+((Real)2.0)*fB1+fC;
						}
						else
						{
							fT = -fB1/fA11;
							fSqrDist = fB1*fT+fC;
						}
					}
				}
				else if ( fT < (Real)0.0 )  // region 5
				{
					fT = (Real)0.0;
					if ( fB0 >= (Real)0.0 )
					{
						fS = (Real)0.0;
						fSqrDist = fC;
					}
					else if ( -fB0 >= fA00 )
					{
						fS = (Real)1.0;
						fSqrDist = fA00+((Real)2.0)*fB0+fC;
					}
					else
					{
						fS = -fB0/fA00;
						fSqrDist = fB0*fS+fC;
					}
				}
				else  // region 0
				{
					// minimum at interior point
					Real fInvDet = ((Real)1.0)/fDet;
					fS *= fInvDet;
					fT *= fInvDet;
					fSqrDist = fS*(fA00*fS+fA01*fT+((Real)2.0)*fB0) +
						fT*(fA01*fS+fA11*fT+((Real)2.0)*fB1)+fC;
				}
			}
			else
			{
				Real fTmp0, fTmp1, fNumer, fDenom;

				if ( fS < (Real)0.0 )  // region 2
				{
					fTmp0 = fA01 + fB0;
					fTmp1 = fA11 + fB1;
					if ( fTmp1 > fTmp0 )
					{
						fNumer = fTmp1 - fTmp0;
						fDenom = fA00-2.0f*fA01+fA11;
						if ( fNumer >= fDenom )
						{
							fS = (Real)1.0;
							fT = (Real)0.0;
							fSqrDist = fA00+((Real)2.0)*fB0+fC;
						}
						else
						{
							fS = fNumer/fDenom;
							fT = (Real)1.0 - fS;
							fSqrDist = fS*(fA00*fS+fA01*fT+2.0f*fB0) +
								fT*(fA01*fS+fA11*fT+((Real)2.0)*fB1)+fC;
						}
					}
					else
					{
						fS = (Real)0.0;
						if ( fTmp1 <= (Real)0.0 )
						{
							fT = (Real)1.0;
							fSqrDist = fA11+((Real)2.0)*fB1+fC;
						}
						else if ( fB1 >= (Real)0.0 )
						{
							fT = (Real)0.0;
							fSqrDist = fC;
						}
						else
						{
							fT = -fB1/fA11;
							fSqrDist = fB1*fT+fC;
						}
					}
				}
				else if ( fT < (Real)0.0 )  // region 6
				{
					fTmp0 = fA01 + fB1;
					fTmp1 = fA00 + fB0;
					if ( fTmp1 > fTmp0 )
					{
						fNumer = fTmp1 - fTmp0;
						fDenom = fA00-((Real)2.0)*fA01+fA11;
						if ( fNumer >= fDenom )
						{
							fT = (Real)1.0;
							fS = (Real)0.0;
							fSqrDist = fA11+((Real)2.0)*fB1+fC;
						}
						else
						{
							fT = fNumer/fDenom;
							fS = (Real)1.0 - fT;
							fSqrDist = fS*(fA00*fS+fA01*fT+((Real)2.0)*fB0) +
								fT*(fA01*fS+fA11*fT+((Real)2.0)*fB1)+fC;
						}
					}
					else
					{
						fT = (Real)0.0;
						if ( fTmp1 <= (Real)0.0 )
						{
							fS = (Real)1.0;
							fSqrDist = fA00+((Real)2.0)*fB0+fC;
						}
						else if ( fB0 >= (Real)0.0 )
						{
							fS = (Real)0.0;
							fSqrDist = fC;
						}
						else
						{
							fS = -fB0/fA00;
							fSqrDist = fB0*fS+fC;
						}
					}
				}
				else  // region 1
				{
					fNumer = fA11 + fB1 - fA01 - fB0;
					if ( fNumer <= (Real)0.0 )
					{
						fS = (Real)0.0;
						fT = (Real)1.0;
						fSqrDist = fA11+((Real)2.0)*fB1+fC;
					}
					else
					{
						fDenom = fA00-2.0f*fA01+fA11;
						if ( fNumer >= fDenom )
						{
							fS = (Real)1.0;
							fT = (Real)0.0;
							fSqrDist = fA00+((Real)2.0)*fB0+fC;
						}
						else
						{
							fS = fNumer/fDenom;
							fT = (Real)1.0 - fS;
							fSqrDist = fS*(fA00*fS+fA01*fT+((Real)2.0)*fB0) +
								fT*(fA01*fS+fA11*fT+((Real)2.0)*fB1)+fC;
						}
					}
				}
			}

			// Uncomment this if you want the minimal to get the closest point in the
			// triangle (barycentric coordinates)
			//if ( pfSParam ) outSParam = fS;
			//if ( pfTParam ) outTParam = fT;

			return Math::Abs(fSqrDist);
		}
		//------------------------------------------------------------------------
	}
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -