📄 ogretriangle.cpp
字号:
///////////////////////////////////////////////////////////////////////////////
/// @file OgreTriangle.cpp
/// @brief <TODO: insert file description here>
///
/// @author The OgreOpcode Team @date 28-05-2005
///
///////////////////////////////////////////////////////////////////////////////
///
/// This file is part of OgreOpcode.
///
/// A lot of the code is based on the Nebula Opcode Collision module, see docs/Nebula_license.txt
///
/// OgreOpcode is free software; you can redistribute it and/or
/// modify it under the terms of the GNU Lesser General Public
/// License as published by the Free Software Foundation; either
/// version 2.1 of the License, or (at your option) any later version.
///
/// OgreOpcode is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
/// Lesser General Public License for more details.
///
/// You should have received a copy of the GNU Lesser General Public
/// License along with OgreOpcode; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
///////////////////////////////////////////////////////////////////////////////
#include "OgreOpcodeMath.h"
#include "OgreTriangle.h"
#include "OgreCapsule.h"
using namespace Ogre;
namespace OgreOpcode
{
namespace Details
{
//------------------------------------------------------------------------
Real Triangle::squaredDistance( const Vector3& point ) const
{
// edge pre-computing
Vector3 e0 = vertices[1] - vertices[0];
Vector3 e1 = vertices[2] - vertices[1];
Vector3 kDiff = e0 - point;
Real fA00 = e0.squaredLength();
Real fA01 = e0 | e1;
Real fA11 = e1.squaredLength();
Real fB0 = kDiff.dotProduct(e0);
Real fB1 = kDiff.dotProduct(e1);
Real fC = kDiff.squaredLength();
Real fDet = Math::Abs(fA00*fA11-fA01*fA01);
Real fS = fA01*fB1-fA11*fB0;
Real fT = fA01*fB0-fA00*fB1;
Real fSqrDist;
if ( fS + fT <= fDet )
{
if ( fS < (Real)0.0 )
{
if ( fT < (Real)0.0 ) // region 4
{
if ( fB0 < (Real)0.0 )
{
fT = (Real)0.0;
if ( -fB0 >= fA00 )
{
fS = (Real)1.0;
fSqrDist = fA00+((Real)2.0)*fB0+fC;
}
else
{
fS = -fB0/fA00;
fSqrDist = fB0*fS+fC;
}
}
else
{
fS = (Real)0.0;
if ( fB1 >= (Real)0.0 )
{
fT = (Real)0.0;
fSqrDist = fC;
}
else if ( -fB1 >= fA11 )
{
fT = (Real)1.0;
fSqrDist = fA11+((Real)2.0)*fB1+fC;
}
else
{
fT = -fB1/fA11;
fSqrDist = fB1*fT+fC;
}
}
}
else // region 3
{
fS = (Real)0.0;
if ( fB1 >= (Real)0.0 )
{
fT = (Real)0.0;
fSqrDist = fC;
}
else if ( -fB1 >= fA11 )
{
fT = (Real)1.0;
fSqrDist = fA11+((Real)2.0)*fB1+fC;
}
else
{
fT = -fB1/fA11;
fSqrDist = fB1*fT+fC;
}
}
}
else if ( fT < (Real)0.0 ) // region 5
{
fT = (Real)0.0;
if ( fB0 >= (Real)0.0 )
{
fS = (Real)0.0;
fSqrDist = fC;
}
else if ( -fB0 >= fA00 )
{
fS = (Real)1.0;
fSqrDist = fA00+((Real)2.0)*fB0+fC;
}
else
{
fS = -fB0/fA00;
fSqrDist = fB0*fS+fC;
}
}
else // region 0
{
// minimum at interior point
Real fInvDet = ((Real)1.0)/fDet;
fS *= fInvDet;
fT *= fInvDet;
fSqrDist = fS*(fA00*fS+fA01*fT+((Real)2.0)*fB0) +
fT*(fA01*fS+fA11*fT+((Real)2.0)*fB1)+fC;
}
}
else
{
Real fTmp0, fTmp1, fNumer, fDenom;
if ( fS < (Real)0.0 ) // region 2
{
fTmp0 = fA01 + fB0;
fTmp1 = fA11 + fB1;
if ( fTmp1 > fTmp0 )
{
fNumer = fTmp1 - fTmp0;
fDenom = fA00-2.0f*fA01+fA11;
if ( fNumer >= fDenom )
{
fS = (Real)1.0;
fT = (Real)0.0;
fSqrDist = fA00+((Real)2.0)*fB0+fC;
}
else
{
fS = fNumer/fDenom;
fT = (Real)1.0 - fS;
fSqrDist = fS*(fA00*fS+fA01*fT+2.0f*fB0) +
fT*(fA01*fS+fA11*fT+((Real)2.0)*fB1)+fC;
}
}
else
{
fS = (Real)0.0;
if ( fTmp1 <= (Real)0.0 )
{
fT = (Real)1.0;
fSqrDist = fA11+((Real)2.0)*fB1+fC;
}
else if ( fB1 >= (Real)0.0 )
{
fT = (Real)0.0;
fSqrDist = fC;
}
else
{
fT = -fB1/fA11;
fSqrDist = fB1*fT+fC;
}
}
}
else if ( fT < (Real)0.0 ) // region 6
{
fTmp0 = fA01 + fB1;
fTmp1 = fA00 + fB0;
if ( fTmp1 > fTmp0 )
{
fNumer = fTmp1 - fTmp0;
fDenom = fA00-((Real)2.0)*fA01+fA11;
if ( fNumer >= fDenom )
{
fT = (Real)1.0;
fS = (Real)0.0;
fSqrDist = fA11+((Real)2.0)*fB1+fC;
}
else
{
fT = fNumer/fDenom;
fS = (Real)1.0 - fT;
fSqrDist = fS*(fA00*fS+fA01*fT+((Real)2.0)*fB0) +
fT*(fA01*fS+fA11*fT+((Real)2.0)*fB1)+fC;
}
}
else
{
fT = (Real)0.0;
if ( fTmp1 <= (Real)0.0 )
{
fS = (Real)1.0;
fSqrDist = fA00+((Real)2.0)*fB0+fC;
}
else if ( fB0 >= (Real)0.0 )
{
fS = (Real)0.0;
fSqrDist = fC;
}
else
{
fS = -fB0/fA00;
fSqrDist = fB0*fS+fC;
}
}
}
else // region 1
{
fNumer = fA11 + fB1 - fA01 - fB0;
if ( fNumer <= (Real)0.0 )
{
fS = (Real)0.0;
fT = (Real)1.0;
fSqrDist = fA11+((Real)2.0)*fB1+fC;
}
else
{
fDenom = fA00-2.0f*fA01+fA11;
if ( fNumer >= fDenom )
{
fS = (Real)1.0;
fT = (Real)0.0;
fSqrDist = fA00+((Real)2.0)*fB0+fC;
}
else
{
fS = fNumer/fDenom;
fT = (Real)1.0 - fS;
fSqrDist = fS*(fA00*fS+fA01*fT+((Real)2.0)*fB0) +
fT*(fA01*fS+fA11*fT+((Real)2.0)*fB1)+fC;
}
}
}
}
// Uncomment this if you want the minimal to get the closest point in the
// triangle (barycentric coordinates)
//if ( pfSParam ) outSParam = fS;
//if ( pfTParam ) outTParam = fT;
return Math::Abs(fSqrDist);
}
//------------------------------------------------------------------------
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -