📄 opc_optimizedtree.cpp
字号:
* OPCODE 1.3 does not provide support for refitting 'normal' collision trees
* because they are much slower to update than no-leaf trees. This feature was
* added in OPCODE 1.3.2 because we may want to compute between deformable models
* using 'normal' AABB trees. The main problem here is that normal trees have twice
* as nodes to refit than no-leaf trees.
* The performance tests I've conduced in my engine points that normal trees are
* roughly 2 times slower to refit than no-leaf trees. I recommend thge use of 'normal'
* trees only when you absolutely need triangle-triangle intersections to be performed,
* because no-leaf trees typically outperforms normal trees in just everything. Send me
* any questions, comments or suggestions you have by mail {gilvanmaia@gmail.com}.
*
* \param mesh_interface [in] mesh interface for current model
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBCollisionTree::Refit(const MeshInterface* mesh_interface)
{
// (Commented because we support it now!)
// ASSERT(!"Not implemented since AABBCollisionTrees have twice as more nodes to refit as AABBNoLeafTrees!");
// Checkings
if(!mesh_interface) return false;
// Bottom-up update
VertexPointers VP;
IceMaths::Point Min,Max;
IceMaths::Point Min_,Max_;
udword Index = mNbNodes;
while(Index--)
{
AABBCollisionNode& Current = mNodes[Index];
if( Current.IsLeaf() )
{
mesh_interface->GetTriangle(VP, Current.GetPrimitive() );
ComputeMinMax(Min, Max, VP);
}else
{
if( Current.GetPos() )
{
const CollisionAABB& CurrentBox = Current.GetPos()->mAABB;
CurrentBox.GetMin(Min);
CurrentBox.GetMax(Max);
}
if( Current.GetNeg() )
{
const CollisionAABB& CurrentBox = Current.GetNeg()->mAABB;
CurrentBox.GetMin(Min_);
CurrentBox.GetMax(Max_);
}
}
#ifdef OPC_USE_FCOMI
Min.x = FCMin2(Min.x, Min_.x);
Max.x = FCMax2(Max.x, Max_.x);
Min.y = FCMin2(Min.y, Min_.y);
Max.y = FCMax2(Max.y, Max_.y);
Min.z = FCMin2(Min.z, Min_.z);
Max.z = FCMax2(Max.z, Max_.z);
#else
Min.Min(Min_);
Max.Max(Max_);
#endif
Current.mAABB.SetMinMax(Min, Max);
}
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Walks the tree and call the user back for each node.
* \param callback [in] walking callback
* \param user_data [in] callback's user data
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBCollisionTree::Walk(GenericWalkingCallback callback, void* user_data) const
{
if(!callback) return false;
struct Local
{
static void _Walk(const AABBCollisionNode* current_node, GenericWalkingCallback callback, void* user_data)
{
if(!current_node || !(callback)(current_node, user_data)) return;
if(!current_node->IsLeaf())
{
_Walk(current_node->GetPos(), callback, user_data);
_Walk(current_node->GetNeg(), callback, user_data);
}
}
};
Local::_Walk(mNodes, callback, user_data);
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Constructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
AABBNoLeafTree::AABBNoLeafTree() : mNodes(null)
{
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Destructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
AABBNoLeafTree::~AABBNoLeafTree()
{
DELETEARRAY(mNodes);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Builds the collision tree from a generic AABB tree.
* \param tree [in] generic AABB tree
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBNoLeafTree::Build(AABBTree* tree)
{
// Checkings
if(!tree) return false;
// Check the input tree is complete
udword NbTriangles = tree->GetNbPrimitives();
udword NbNodes = tree->GetNbNodes();
if(NbNodes!=NbTriangles*2-1) return false;
// Get nodes
if(mNbNodes!=NbTriangles-1) // Same number of nodes => keep moving
{
mNbNodes = NbTriangles-1;
DELETEARRAY(mNodes);
mNodes = new AABBNoLeafNode[mNbNodes];
CHECKALLOC(mNodes);
}
// Build the tree
udword CurID = 1;
_BuildNoLeafTree(mNodes, 0, CurID, tree);
ASSERT(CurID==mNbNodes);
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Refits the collision tree after vertices have been modified.
* \param mesh_interface [in] mesh interface for current model
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBNoLeafTree::Refit(const MeshInterface* mesh_interface)
{
// Checkings
if(!mesh_interface) return false;
// Bottom-up update
VertexPointers VP;
IceMaths::Point Min,Max;
IceMaths::Point Min_,Max_;
udword Index = mNbNodes;
while(Index--)
{
AABBNoLeafNode& Current = mNodes[Index];
if(Current.HasPosLeaf())
{
mesh_interface->GetTriangle(VP, Current.GetPosPrimitive());
ComputeMinMax(Min, Max, VP);
}
else
{
const CollisionAABB& CurrentBox = Current.GetPos()->mAABB;
CurrentBox.GetMin(Min);
CurrentBox.GetMax(Max);
}
if(Current.HasNegLeaf())
{
mesh_interface->GetTriangle(VP, Current.GetNegPrimitive());
ComputeMinMax(Min_, Max_, VP);
}
else
{
const CollisionAABB& CurrentBox = Current.GetNeg()->mAABB;
CurrentBox.GetMin(Min_);
CurrentBox.GetMax(Max_);
}
#ifdef OPC_USE_FCOMI
Min.x = FCMin2(Min.x, Min_.x);
Max.x = FCMax2(Max.x, Max_.x);
Min.y = FCMin2(Min.y, Min_.y);
Max.y = FCMax2(Max.y, Max_.y);
Min.z = FCMin2(Min.z, Min_.z);
Max.z = FCMax2(Max.z, Max_.z);
#else
Min.Min(Min_);
Max.Max(Max_);
#endif
Current.mAABB.SetMinMax(Min, Max);
}
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Walks the tree and call the user back for each node.
* \param callback [in] walking callback
* \param user_data [in] callback's user data
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBNoLeafTree::Walk(GenericWalkingCallback callback, void* user_data) const
{
if(!callback) return false;
struct Local
{
static void _Walk(const AABBNoLeafNode* current_node, GenericWalkingCallback callback, void* user_data)
{
if(!current_node || !(callback)(current_node, user_data)) return;
if(!current_node->HasPosLeaf()) _Walk(current_node->GetPos(), callback, user_data);
if(!current_node->HasNegLeaf()) _Walk(current_node->GetNeg(), callback, user_data);
}
};
Local::_Walk(mNodes, callback, user_data);
return true;
}
// Quantization notes:
// - We could use the highest bits of mData to store some more quantized bits. Dequantization code
// would be slightly more complex, but number of overlap tests would be reduced (and anyhow those
// bits are currently wasted). Of course it's not possible if we move to 16 bits mData.
// - Something like "16 bits floats" could be tested, to bypass the int-to-float conversion.
// - A dedicated BV-BV test could be used, dequantizing while testing for overlap. (i.e. it's some
// lazy-dequantization which may save some work in case of early exits). At the very least some
// muls could be saved by precomputing several more matrices. But maybe not worth the pain.
// - Do we need to dequantize anyway? Not doing the extents-related muls only implies the box has
// been scaled, for example.
// - The deeper we move into the hierarchy, the smaller the extents should be. May not need a fixed
// number of quantization bits. Even better, could probably be best delta-encoded.
// Find max values. Some people asked why I wasn't simply using the first node. Well, I can't.
// I'm not looking for (min, max) values like in a standard AABB, I'm looking for the extremal
// centers/extents in order to quantize them. The first node would only give a single center and
// a single extents. While extents would be the biggest, the center wouldn't.
#define FIND_MAX_VALUES \
/* Get max values */ \
IceMaths::Point CMax(MIN_FLOAT, MIN_FLOAT, MIN_FLOAT); \
IceMaths::Point EMax(MIN_FLOAT, MIN_FLOAT, MIN_FLOAT); \
for(udword i=0;i<mNbNodes;i++) \
{ \
if(fabsf(Nodes[i].mAABB.mCenter.x)>CMax.x) CMax.x = fabsf(Nodes[i].mAABB.mCenter.x); \
if(fabsf(Nodes[i].mAABB.mCenter.y)>CMax.y) CMax.y = fabsf(Nodes[i].mAABB.mCenter.y); \
if(fabsf(Nodes[i].mAABB.mCenter.z)>CMax.z) CMax.z = fabsf(Nodes[i].mAABB.mCenter.z); \
if(fabsf(Nodes[i].mAABB.mExtents.x)>EMax.x) EMax.x = fabsf(Nodes[i].mAABB.mExtents.x); \
if(fabsf(Nodes[i].mAABB.mExtents.y)>EMax.y) EMax.y = fabsf(Nodes[i].mAABB.mExtents.y); \
if(fabsf(Nodes[i].mAABB.mExtents.z)>EMax.z) EMax.z = fabsf(Nodes[i].mAABB.mExtents.z); \
}
#define INIT_QUANTIZATION \
udword nbc=15; /* Keep one bit for sign */ \
udword nbe=15; /* Keep one bit for fix */ \
if(!gFixQuantized) nbe++; \
\
/* Compute quantization coeffs */ \
IceMaths::Point CQuantCoeff, EQuantCoeff; \
CQuantCoeff.x = CMax.x!=0.0f ? float((1<<nbc)-1)/CMax.x : 0.0f; \
CQuantCoeff.y = CMax.y!=0.0f ? float((1<<nbc)-1)/CMax.y : 0.0f; \
CQuantCoeff.z = CMax.z!=0.0f ? float((1<<nbc)-1)/CMax.z : 0.0f; \
EQuantCoeff.x = EMax.x!=0.0f ? float((1<<nbe)-1)/EMax.x : 0.0f; \
EQuantCoeff.y = EMax.y!=0.0f ? float((1<<nbe)-1)/EMax.y : 0.0f; \
EQuantCoeff.z = EMax.z!=0.0f ? float((1<<nbe)-1)/EMax.z : 0.0f; \
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -