📄 opc_optimizedtree.cpp
字号:
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* OPCODE - Optimized Collision Detection
* Copyright (C) 2001 Pierre Terdiman
* Homepage: http://www.codercorner.com/Opcode.htm
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Contains code for optimized trees. Implements 4 trees:
* - normal
* - no leaf
* - quantized
* - no leaf / quantized
*
* \file OPC_OptimizedTree.cpp
* \author Pierre Terdiman
* \date March, 20, 2001
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* A standard AABB tree.
*
* \class AABBCollisionTree
* \author Pierre Terdiman
* \version 1.3
* \date March, 20, 2001
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* A no-leaf AABB tree.
*
* \class AABBNoLeafTree
* \author Pierre Terdiman
* \version 1.3
* \date March, 20, 2001
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* A quantized AABB tree.
*
* \class AABBQuantizedTree
* \author Pierre Terdiman
* \version 1.3
* \date March, 20, 2001
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* A quantized no-leaf AABB tree.
*
* \class AABBQuantizedNoLeafTree
* \author Pierre Terdiman
* \version 1.3
* \date March, 20, 2001
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Precompiled Header
#include "Opcode/Stdafx.h"
using namespace Opcode;
//! Compilation flag:
//! - true to fix quantized boxes (i.e. make sure they enclose the original ones)
//! - false to see the effects of quantization errors (faster, but wrong results in some cases)
static bool gFixQuantized = true;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Builds an implicit tree from a standard one. An implicit tree is a complete tree (2*N-1 nodes) whose negative
* box pointers and primitive pointers have been made implicit, hence packing 3 pointers in one.
*
* Layout for implicit trees:
* Node:
* - box
* - data (32-bits value)
*
* if data's LSB = 1 => remaining bits are a primitive pointer
* else remaining bits are a P-node pointer, and N = P + 1
*
* \relates AABBCollisionNode
* \fn _BuildCollisionTree(AABBCollisionNode* linear, const udword box_id, udword& current_id, const AABBTreeNode* current_node)
* \param linear [in] base address of destination nodes
* \param box_id [in] index of destination node
* \param current_id [in] current running index
* \param current_node [in] current node from input tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
static void _BuildCollisionTree(AABBCollisionNode* linear, const udword box_id, udword& current_id, const AABBTreeNode* current_node)
{
// Current node from input tree is "current_node". Must be flattened into "linear[boxid]".
// Store the AABB
current_node->GetAABB()->GetCenter(linear[box_id].mAABB.mCenter);
current_node->GetAABB()->GetExtents(linear[box_id].mAABB.mExtents);
// Store remaining info
if(current_node->IsLeaf())
{
// The input tree must be complete => i.e. one primitive/leaf
ASSERT(current_node->GetNbPrimitives()==1);
// Get the primitive index from the input tree
udword PrimitiveIndex = current_node->GetPrimitives()[0];
// Setup box data as the primitive index, marked as leaf
linear[box_id].mData = (PrimitiveIndex<<1)|1;
}
else
{
// To make the negative one implicit, we must store P and N in successive order
udword PosID = current_id++; // Get a new id for positive child
udword NegID = current_id++; // Get a new id for negative child
// Setup box data as the forthcoming new P pointer
linear[box_id].mData = (size_t)&linear[PosID];
// Make sure it's not marked as leaf
ASSERT(!(linear[box_id].mData&1));
// Recurse with new IDs
_BuildCollisionTree(linear, PosID, current_id, current_node->GetPos());
_BuildCollisionTree(linear, NegID, current_id, current_node->GetNeg());
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Builds a "no-leaf" tree from a standard one. This is a tree whose leaf nodes have been removed.
*
* Layout for no-leaf trees:
*
* Node:
* - box
* - P pointer => a node (LSB=0) or a primitive (LSB=1)
* - N pointer => a node (LSB=0) or a primitive (LSB=1)
*
* \relates AABBNoLeafNode
* \fn _BuildNoLeafTree(AABBNoLeafNode* linear, const udword box_id, udword& current_id, const AABBTreeNode* current_node)
* \param linear [in] base address of destination nodes
* \param box_id [in] index of destination node
* \param current_id [in] current running index
* \param current_node [in] current node from input tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
static void _BuildNoLeafTree(AABBNoLeafNode* linear, const udword box_id, udword& current_id, const AABBTreeNode* current_node)
{
const AABBTreeNode* P = current_node->GetPos();
const AABBTreeNode* N = current_node->GetNeg();
// Leaf nodes here?!
ASSERT(P);
ASSERT(N);
// Internal node => keep the box
current_node->GetAABB()->GetCenter(linear[box_id].mAABB.mCenter);
current_node->GetAABB()->GetExtents(linear[box_id].mAABB.mExtents);
if(P->IsLeaf())
{
// The input tree must be complete => i.e. one primitive/leaf
ASSERT(P->GetNbPrimitives()==1);
// Get the primitive index from the input tree
udword PrimitiveIndex = P->GetPrimitives()[0];
// Setup prev box data as the primitive index, marked as leaf
linear[box_id].mPosData = (PrimitiveIndex<<1)|1;
}
else
{
// Get a new id for positive child
udword PosID = current_id++;
// Setup box data
linear[box_id].mPosData = (size_t)&linear[PosID];
// Make sure it's not marked as leaf
ASSERT(!(linear[box_id].mPosData&1));
// Recurse
_BuildNoLeafTree(linear, PosID, current_id, P);
}
if(N->IsLeaf())
{
// The input tree must be complete => i.e. one primitive/leaf
ASSERT(N->GetNbPrimitives()==1);
// Get the primitive index from the input tree
udword PrimitiveIndex = N->GetPrimitives()[0];
// Setup prev box data as the primitive index, marked as leaf
linear[box_id].mNegData = (PrimitiveIndex<<1)|1;
}
else
{
// Get a new id for negative child
udword NegID = current_id++;
// Setup box data
linear[box_id].mNegData = (size_t)&linear[NegID];
// Make sure it's not marked as leaf
ASSERT(!(linear[box_id].mNegData&1));
// Recurse
_BuildNoLeafTree(linear, NegID, current_id, N);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Constructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
AABBCollisionTree::AABBCollisionTree() : mNodes(null)
{
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Destructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
AABBCollisionTree::~AABBCollisionTree()
{
DELETEARRAY(mNodes);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Builds the collision tree from a generic AABB tree.
* \param tree [in] generic AABB tree
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBCollisionTree::Build(AABBTree* tree)
{
// Checkings
if(!tree) return false;
// Check the input tree is complete
udword NbTriangles = tree->GetNbPrimitives();
udword NbNodes = tree->GetNbNodes();
if(NbNodes!=NbTriangles*2-1) return false;
// Get nodes
if(mNbNodes!=NbNodes) // Same number of nodes => keep moving
{
mNbNodes = NbNodes;
DELETEARRAY(mNodes);
mNodes = new AABBCollisionNode[mNbNodes];
CHECKALLOC(mNodes);
}
// Build the tree
udword CurID = 1;
_BuildCollisionTree(mNodes, 0, CurID, tree);
ASSERT(CurID==mNbNodes);
return true;
}
inline_ void ComputeMinMax(IceMaths::Point& min, IceMaths::Point& max, const VertexPointers& vp)
{
// Compute triangle's AABB = a leaf box
#ifdef OPC_USE_FCOMI // a 15% speedup on my machine, not much
min.x = FCMin3(vp.Vertex[0]->x, vp.Vertex[1]->x, vp.Vertex[2]->x);
max.x = FCMax3(vp.Vertex[0]->x, vp.Vertex[1]->x, vp.Vertex[2]->x);
min.y = FCMin3(vp.Vertex[0]->y, vp.Vertex[1]->y, vp.Vertex[2]->y);
max.y = FCMax3(vp.Vertex[0]->y, vp.Vertex[1]->y, vp.Vertex[2]->y);
min.z = FCMin3(vp.Vertex[0]->z, vp.Vertex[1]->z, vp.Vertex[2]->z);
max.z = FCMax3(vp.Vertex[0]->z, vp.Vertex[1]->z, vp.Vertex[2]->z);
#else
min = *vp.Vertex[0];
max = *vp.Vertex[0];
min.Min(*vp.Vertex[1]);
max.Max(*vp.Vertex[1]);
min.Min(*vp.Vertex[2]);
max.Max(*vp.Vertex[2]);
#endif
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Refits the collision tree after vertices have been modified.
*
* \remarks
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -