⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ogreorientedbox.cpp

📁 opcode是功能强大
💻 CPP
字号:
///////////////////////////////////////////////////////////////////////////////
///  @file OgreOrientedBox.cpp
///  @brief <TODO: insert file description here>
///
///  @author The OgreOpcode Team @date 28-05-2005
///
///////////////////////////////////////////////////////////////////////////////
///
///  This file is part of OgreOpcode.
///
///  A lot of the code is based on the Nebula Opcode Collision module, see docs/Nebula_license.txt
///
///  OgreOpcode is free software; you can redistribute it and/or
///  modify it under the terms of the GNU Lesser General Public
///  License as published by the Free Software Foundation; either
///  version 2.1 of the License, or (at your option) any later version.
///
///  OgreOpcode is distributed in the hope that it will be useful,
///  but WITHOUT ANY WARRANTY; without even the implied warranty of
///  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
///  Lesser General Public License for more details.
///
///  You should have received a copy of the GNU Lesser General Public
///  License along with OgreOpcode; if not, write to the Free Software
///  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
///
///////////////////////////////////////////////////////////////////////////////

#include "OgreOrientedBox.h"

using namespace Ogre;
namespace OgreOpcode
{
	namespace Details
    {
		//------------------------------------------------------------------------
		bool OrientedBox::intersects( const Details::bbox3& box ) const
		{ 
			// Optimize this: return intersects( OrientedBox(box) );

			//translation, in parent frame (note: A = this, B = obb)		   
			Vector3 v = box.getCenter() - center;		   
			Vector3 boxExtents = box.getExtents();

			//translation, in A's frame
			Vector3 T( v.dotProduct( rot.GetColumn(0)),
				v.dotProduct( rot.GetColumn(1)),
				v.dotProduct( rot.GetColumn(2)) );

			//B's basis with respect to A's local frame
			Real R[3][3];
			Real FR[3][3];
			Real ra, rb, t;
			long i, k;
			//calculate rotation matrix from "obb" to "this" - palso recomputes the fabs matrix
			for( i=0 ; i<3 ; i++ )
			{
				for( k=0 ; k<3 ; k++ )
				{
					R[i][k] = rot.GetColumn(k)[i];
					// fabs and shift borrowed from RAPID
					FR[i][k] = 1e-6f + Math::Abs(R[i][k]);
				}
			}

			// Separating axis theorem: test of all 15 potential separating axes
			// These axes are always parallel to each OBB edges or its normal plane
			const Vector3 &a = extents,
				&b = boxExtents;

			// First stage: each obb's axis!
			//A's basis vectors
			for( i=0 ; i<3 ; i++ )
			{
				ra = a[i];
				rb = b.x*FR[i][0] + b.y*FR[i][1] + b.z*FR[i][2];
				t = Math::Abs( T[i] );

				if( t > ra + rb ) return false;
			}

			//B's basis vectors
			for( k=0 ; k<3 ; k++ )
			{
				ra = a.x*FR[0][k] + a.y*FR[1][k] + a.z*FR[2][k];
				rb = b[k];
				t  = Math::Abs( T[0]*R[0][k] + T[1]*R[1][k] + T[2]*R[2][k] );

				if( t > ra + rb ) return false;
			}

			// Second stage: 9 cross products
			//L = A0 x B0
			ra = a[1]*FR[2][0] + a[2]*FR[1][0];
			rb = b[1]*FR[0][2] + b[2]*FR[0][1];
			t  = Math::Abs( T[2]*R[1][0] -  T[1]*R[2][0] );
			if( t > ra + rb ) return false;

			//L = A0 x B1
			ra = a[1]*FR[2][1] + a[2]*FR[1][1];
			rb = b[0]*FR[0][2] + b[2]*FR[0][0];
			t = Math::Abs( T[2]*R[1][1] - T[1]*R[2][1] );
			if( t > ra + rb ) return false;

			//L = A0 x B2
			ra = a[1]*FR[2][2] + a[2]*FR[1][2];
			rb = b[0]*FR[0][1] + b[1]*FR[0][0];
			t = Math::Abs( T[2]*R[1][2] - T[1]*R[2][2] );
			if( t > ra + rb ) return false;

			//L = A1 x B0
			ra = a[0]*FR[2][0] + a[2]*FR[0][0];
			rb = b[1]*FR[1][2] + b[2]*FR[1][1];
			t = Math::Abs( T[0]*R[2][0] - T[2]*R[0][0] );
			if( t > ra + rb ) return false;

			//L = A1 x B1
			ra = a[0]*FR[2][1] + a[2]*FR[0][1];
			rb = b[0]*FR[1][2] + b[2]*FR[1][0];
			t = Math::Abs( T[0]*R[2][1] - T[2]*R[0][1] );
			if( t > ra + rb ) return false;

			//L = A1 x B2
			ra = a[0]*FR[2][2] + a[2]*FR[0][2];
			rb = b[0]*FR[1][1] + b[1]*FR[1][0];
			t = Math::Abs( T[0]*R[2][2] - T[2]*R[0][2] );
			if( t > ra + rb ) return false;

			//L = A2 x B0
			ra = a[0]*FR[1][0] + a[1]*FR[0][0];
			rb = b[1]*FR[2][2] + b[2]*FR[2][1];
			t =  Math::Abs( T[1]*R[0][0] - T[0]*R[1][0] );
			if( t > ra + rb ) return false;

			//L = A2 x B1
			ra = a[0]*FR[1][1] + a[1]*FR[0][1];
			rb = b[0]*FR[2][2] + b[2]*FR[2][0];
			t = Math::Abs( T[1]*R[0][1] - T[0]*R[1][1] );
			if( t > ra + rb ) return false;

			//L = A2 x B2
			ra = a[0]*FR[1][2] + a[1]*FR[0][2];
			rb = b[0]*FR[2][1] + b[1]*FR[2][0];
			t = Math::Abs( T[1]*R[0][2] - T[0]*R[1][2] );
			if( t > ra + rb )	return false;


			// Phew! No separating axis found, no overlap!
			return true;
		}
		//------------------------------------------------------------------------
		bool OrientedBox::intersects( const OrientedBox& obb ) const
		{           
			//translation, in parent frame (note: A = this, B = obb)
			Vector3 v = obb.center - center;		   
			//translation, in A's frame
			Vector3 T( v.dotProduct( rot.GetColumn(0)),
				v.dotProduct( rot.GetColumn(1)),
				v.dotProduct( rot.GetColumn(2)) );

			//B's basis with respect to A's local frame
			Real R[3][3];
			Real FR[3][3];
			Real ra, rb, t;
			long i, k;
			//calculate rotation matrix from "obb" to "this" - palso recomputes the fabs matrix
			for( i=0 ; i<3 ; i++ )
			{
				for( k=0 ; k<3 ; k++ )
				{
					R[i][k] = rot.GetColumn(i).dotProduct(obb.rot.GetColumn(k) );
					// fabs and shift borrowed from RAPID
					FR[i][k] = 1e-6f + Math::Abs(R[i][k]);
				}
			}

			// Separating axis theorem: test of all 15 potential separating axes
			// These axes are always parallel to each OBB edges or its normal plane
			const Vector3 &a = extents,
				&b = obb.extents;

			// First stage: each obb's axis!
			//A's basis vectors
			for( i=0 ; i<3 ; i++ )
			{
				ra = a[i];
				rb = b.x*FR[i][0] + b.y*FR[i][1] + b.z*FR[i][2];
				t = Math::Abs( T[i] );

				if( t > ra + rb ) return false;
			}

			//B's basis vectors
			for( k=0 ; k<3 ; k++ )
			{
				ra = a.x*FR[0][k] + a.y*FR[1][k] + a.z*FR[2][k];
				rb = b[k];
				t  = Math::Abs( T[0]*R[0][k] + T[1]*R[1][k] + T[2]*R[2][k] );

				if( t > ra + rb ) return false;
			}

			// Second stage: 9 cross products
			//L = A0 x B0
			ra = a[1]*FR[2][0] + a[2]*FR[1][0];
			rb = b[1]*FR[0][2] + b[2]*FR[0][1];
			t  = Math::Abs( T[2]*R[1][0] -  T[1]*R[2][0] );
			if( t > ra + rb ) return false;

			//L = A0 x B1
			ra = a[1]*FR[2][1] + a[2]*FR[1][1];
			rb = b[0]*FR[0][2] + b[2]*FR[0][0];
			t = Math::Abs( T[2]*R[1][1] - T[1]*R[2][1] );
			if( t > ra + rb ) return false;

			//L = A0 x B2
			ra = a[1]*FR[2][2] + a[2]*FR[1][2];
			rb = b[0]*FR[0][1] + b[1]*FR[0][0];
			t = Math::Abs( T[2]*R[1][2] - T[1]*R[2][2] );
			if( t > ra + rb ) return false;

			//L = A1 x B0
			ra = a[0]*FR[2][0] + a[2]*FR[0][0];
			rb = b[1]*FR[1][2] + b[2]*FR[1][1];
			t = Math::Abs( T[0]*R[2][0] - T[2]*R[0][0] );
			if( t > ra + rb ) return false;

			//L = A1 x B1
			ra = a[0]*FR[2][1] + a[2]*FR[0][1];
			rb = b[0]*FR[1][2] + b[2]*FR[1][0];
			t = Math::Abs( T[0]*R[2][1] - T[2]*R[0][1] );
			if( t > ra + rb ) return false;

			//L = A1 x B2
			ra = a[0]*FR[2][2] + a[2]*FR[0][2];
			rb = b[0]*FR[1][1] + b[1]*FR[1][0];
			t = Math::Abs( T[0]*R[2][2] - T[2]*R[0][2] );
			if( t > ra + rb ) return false;

			//L = A2 x B0
			ra = a[0]*FR[1][0] + a[1]*FR[0][0];
			rb = b[1]*FR[2][2] + b[2]*FR[2][1];
			t =  Math::Abs( T[1]*R[0][0] - T[0]*R[1][0] );
			if( t > ra + rb ) return false;

			//L = A2 x B1
			ra = a[0]*FR[1][1] + a[1]*FR[0][1];
			rb = b[0]*FR[2][2] + b[2]*FR[2][0];
			t = Math::Abs( T[1]*R[0][1] - T[0]*R[1][1] );
			if( t > ra + rb ) return false;

			//L = A2 x B2
			ra = a[0]*FR[1][2] + a[1]*FR[0][2];
			rb = b[0]*FR[2][1] + b[1]*FR[2][0];
			t = Math::Abs( T[1]*R[0][2] - T[0]*R[1][2] );
			if( t > ra + rb )	return false;


			// Phew! No separating axis found, no overlap!
			return true;
		}
		//------------------------------------------------------------------------
	}
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -