📄 ogreopcodemath.cpp
字号:
tmp=a*xxyy;
isect1[0]=tmp+b*x1*yy;
isect1[1]=tmp+c*x0*yy;
tmp=d*xxyy;
isect2[0]=tmp+e*xx*y1;
isect2[1]=tmp+f*xx*y0;
SORT(isect1[0],isect1[1]);
SORT(isect2[0],isect2[1]);
if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return false;
return true;
}
/* sort so that a<=b */
#define SORT2(a,b,smallest) \
if(a>b) \
{ \
float c; \
c=a; \
a=b; \
b=c; \
smallest=1; \
} \
else smallest=0;
static inline void isect2(const Vector3 tri[3],float VV0,float VV1,float VV2,
float D0,float D1,float D2,float *isect0,float *isect1,Vector3 isectline[2])
{
float tmp=D0/(D0-D1);
Vector3 diff;
*isect0=VV0+(VV1-VV0)*tmp;
diff = tri[1] - tri[0];
diff = diff * tmp;
isectline[0] = diff + tri[0];
tmp=D0/(D0-D2);
*isect1=VV0+(VV2-VV0)*tmp;
diff = tri[2] - tri[0];
diff = diff * tmp;
isectline[1] = tri[0] + diff;
}
static inline bool compute_intervals_isectline(const Vector3 tri[3],
float VV0,float VV1,float VV2,float D0,float D1,float D2,
float D0D1,float D0D2,float *isect0,float *isect1,
Vector3 isectline[2])
{
if(D0D1>0.0f)
{
/* here we know that D0D2<=0.0 */
/* that is D0, D1 are on the same side, D2 on the other or on the plane */
Vector3 newTri[3] = {tri[2], tri[0], tri[1]};
isect2(newTri,VV2,VV0,VV1,D2,D0,D1,isect0,isect1,isectline);
}
else if(D0D2>0.0f)
{
Vector3 newTri[3] = {tri[1], tri[0], tri[2]};
/* here we know that d0d1<=0.0 */
isect2(newTri,VV1,VV0,VV2,D1,D0,D2,isect0,isect1,isectline);
}
else if(D1*D2>0.0f || D0!=0.0f)
{
Vector3 newTri[3] = {tri[0], tri[1], tri[2]};
/* here we know that d0d1<=0.0 or that D0!=0.0 */
isect2(newTri,VV0,VV1,VV2,D0,D1,D2,isect0,isect1,isectline);
}
else if(D1!=0.0f)
{
Vector3 newTri[3] = {tri[1], tri[0], tri[2]};
isect2(newTri,VV1,VV0,VV2,D1,D0,D2,isect0,isect1,isectline);
}
else if(D2!=0.0f)
{
Vector3 newTri[3] = {tri[2], tri[0], tri[1]};
isect2(newTri,VV2,VV0,VV1,D2,D0,D1,isect0,isect1,isectline);
}
else
{
/* triangles are coplanar */
return 1;
}
return 0;
}
#define COMPUTE_INTERVALS_ISECTLINE(VERT0,VERT1,VERT2,VV0,VV1,VV2,D0,D1,D2,D0D1,D0D2,isect0,isect1,isectpoint0,isectpoint1) \
if(D0D1>0.0f) \
{ \
/* here we know that D0D2<=0.0 */ \
/* that is D0, D1 are on the same side, D2 on the other or on the plane */ \
isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,&isect0,&isect1,isectpoint0,isectpoint1); \
}
#if 0
else if(D0D2>0.0f) \
{ \
/* here we know that d0d1<=0.0 */ \
isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,&isect0,&isect1,isectpoint0,isectpoint1); \
} \
else if(D1*D2>0.0f || D0!=0.0f) \
{ \
/* here we know that d0d1<=0.0 or that D0!=0.0 */ \
isect2(VERT0,VERT1,VERT2,VV0,VV1,VV2,D0,D1,D2,&isect0,&isect1,isectpoint0,isectpoint1); \
} \
else if(D1!=0.0f) \
{ \
isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,&isect0,&isect1,isectpoint0,isectpoint1); \
} \
else if(D2!=0.0f) \
{ \
isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,&isect0,&isect1,isectpoint0,isectpoint1); \
} \
else \
{ \
/* triangles are coplanar */ \
coplanar=1; \
return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2); \
}
#endif
/**
* Tests if two triangles intersect and compute the line of intersection
* (if they are not coplanar).
*
* @param tri1 Vertices of triangle 1
* @param tri2 Vertices of triangle 2
* @param[out] isectline The line segment where they intersect
* @param[out] coplanar Returns whether the triangles are coplanar
* @return true if the triangles intersect, otherwise false
*
*/
bool Intersect3::triangleTriangle(const Vector3 tri1[3],
const Vector3 tri2[3],
Segment3& isectline, bool& coplanar)
{
Vector3 E1,E2;
Vector3 N1,N2;
float d1,d2;
float du0,du1,du2,dv0,dv1,dv2;
Vector3 D;
float isect1[2] = {0,0}, isect2[2] = {0,0};
Vector3 isectpointA[2];
Vector3 isectpointB[2];
float du0du1,du0du2,dv0dv1,dv0dv2;
short index;
float vp0,vp1,vp2;
float up0,up1,up2;
float b,c,max;
int smallest1,smallest2;
/* compute plane equation of triangle(tri1) */
E1 = tri1[1] - tri1[0];
E2 = tri1[2] - tri1[0];
N1 = E1.crossProduct(E2);
d1 =-(N1.dotProduct(tri1[0]));
/* plane equation 1: N1.X+d1=0 */
/* put tri2 into plane equation 1 to compute signed distances to the plane*/
du0=(N1.dotProduct(tri2[0]))+d1;
du1=(N1.dotProduct(tri2[1]))+d1;
du2=(N1.dotProduct(tri2[2]))+d1;
/* coplanarity robustness check */
#if USE_EPSILON_TEST==TRUE
if(fabs(du0)<SMALL_EPSILON) du0=0.0;
if(fabs(du1)<SMALL_EPSILON) du1=0.0;
if(fabs(du2)<SMALL_EPSILON) du2=0.0;
#endif
du0du1=du0*du1;
du0du2=du0*du2;
if(du0du1>0.0f && du0du2>0.0f) /* same sign on all of them + not equal 0 ? */
return 0; /* no intersection occurs */
/* compute plane of triangle (tri2) */
E1 = tri2[1] - tri2[0];
E2 = tri2[2] - tri2[0];
N2 = E1.crossProduct(E2);
d2=-(N2.dotProduct(tri2[0]));
/* plane equation 2: N2.X+d2=0 */
/* put tri1 into plane equation 2 */
dv0=(N2.dotProduct(tri1[0]))+d2;
dv1=(N2.dotProduct(tri1[1]))+d2;
dv2=(N2.dotProduct(tri1[2]))+d2;
#if USE_EPSILON_TEST==TRUE
if(fabs(dv0)<SMALL_EPSILON) dv0=0.0;
if(fabs(dv1)<SMALL_EPSILON) dv1=0.0;
if(fabs(dv2)<SMALL_EPSILON) dv2=0.0;
#endif
dv0dv1=dv0*dv1;
dv0dv2=dv0*dv2;
if(dv0dv1>0.0f && dv0dv2>0.0f) /* same sign on all of them + not equal 0 ? */
return 0; /* no intersection occurs */
/* compute direction of intersection line */
D = N1.crossProduct(N2);
/* compute and index to the largest component of D */
max=fabs(D[0]);
index=0;
b=fabs(D[1]);
c=fabs(D[2]);
if(b>max) max=b,index=1;
if(c>max) max=c,index=2;
/* this is the simplified projection onto L*/
vp0=tri1[0][index];
vp1=tri1[1][index];
vp2=tri1[2][index];
up0=tri2[0][index];
up1=tri2[1][index];
up2=tri2[2][index];
/* compute interval for triangle 1 */
coplanar=compute_intervals_isectline(tri1,vp0,vp1,vp2,dv0,dv1,dv2,
dv0dv1,dv0dv2,&isect1[0],&isect1[1],isectpointA);
if(coplanar) return coplanar_tri_tri(N1, tri1, tri2);
/* compute interval for triangle 2 */
compute_intervals_isectline(tri2,up0,up1,up2,du0,du1,du2,
du0du1,du0du2,&isect2[0],&isect2[1],isectpointB);
SORT2(isect1[0],isect1[1],smallest1);
SORT2(isect2[0],isect2[1],smallest2);
if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return 0;
/* at this point, we know that the triangles intersect */
if(isect2[0]<isect1[0])
{
if(smallest1==0) { isectline.setStart(isectpointA[0]); }
else { isectline.setStart(isectpointA[1]); }
if(isect2[1]<isect1[1])
{
if(smallest2==0) { isectline.setEnd(isectpointB[1]); }
else { isectline.setEnd(isectpointB[0]); }
}
else
{
if(smallest1==0) { isectline.setEnd(isectpointA[1]); }
else { isectline.setEnd(isectpointA[0]); }
}
}
else
{
if(smallest2==0) { isectline.setStart(isectpointB[0]); }
else { isectline.setStart(isectpointB[1]); }
if(isect2[1]>isect1[1])
{
if(smallest1==0) { isectline.setEnd(isectpointA[1]); }
else { isectline.setEnd(isectpointA[0]); }
}
else
{
if(smallest2==0) { isectline.setEnd(isectpointB[1]); }
else { isectline.setEnd(isectpointB[0]); }
}
}
return true;
}
bool powerOf2(unsigned int i)
{
Ogre::String binary = decimalToBinary(i);
int counter = 0;
for( int index = 0; index < static_cast<int>(binary.size()); ++index )
if( binary[index] == '1' ) ++counter;
if( counter > 1 ) return false;
else return true;
}
Ogre::String decimalToBinary(unsigned int i)
{
Ogre::String binary = "";
Ogre::String temp = "";
do{
temp += (i % 2) + '0';
i = i / 2;
}while( i > 0 );
for( int counter = static_cast<int>(temp.size()); counter > 0; --counter )
binary += temp[counter];
return binary;
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -