⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 icepoint.h

📁 opcode是功能强大
💻 H
📖 第 1 页 / 共 2 页
字号:
								}

		//! Normalizes the vector
		inline_	Point&			Normalize()
								{
									float M = x*x + y*y + z*z;
									if(M)
									{
										M = 1.0f / sqrtf(M);
										x *= M;
										y *= M;
										z *= M;
									}
									return *this;
								}

		//! Sets vector length
		inline_	Point&			SetLength(float length)
								{
									float NewLength = length / Magnitude();
									x *= NewLength;
									y *= NewLength;
									z *= NewLength;
									return *this;
								}

		//! Clamps vector length
		inline_	Point&			ClampLength(float limit_length)
								{
									if(limit_length>=0.0f)	// Magnitude must be positive
									{
										float CurrentSquareLength = SquareMagnitude();

										if(CurrentSquareLength > limit_length * limit_length)
										{
											float Coeff = limit_length / sqrtf(CurrentSquareLength);
											x *= Coeff;
											y *= Coeff;
											z *= Coeff;
										}
									}
									return *this;
								}

		//! Computes distance to another point
		inline_	float			Distance(const Point& b)			const
								{
									return sqrtf((x - b.x)*(x - b.x) + (y - b.y)*(y - b.y) + (z - b.z)*(z - b.z));
								}

		//! Computes square distance to another point
		inline_	float			SquareDistance(const Point& b)		const
								{
									return ((x - b.x)*(x - b.x) + (y - b.y)*(y - b.y) + (z - b.z)*(z - b.z));
								}

		//! Dot product dp = this|a
		inline_	float			Dot(const Point& p)					const		{	return p.x * x + p.y * y + p.z * z;				}

		//! Cross product this = a x b
		inline_	Point&			Cross(const Point& a, const Point& b)
								{
									x = a.y * b.z - a.z * b.y;
									y = a.z * b.x - a.x * b.z;
									z = a.x * b.y - a.y * b.x;
									return *this;
								}

		//! Vector code ( bitmask = sign(z) | sign(y) | sign(x) )
		inline_	udword			VectorCode()						const
								{
									return (IR(x)>>31) | ((IR(y)&SIGN_BITMASK)>>30) | ((IR(z)&SIGN_BITMASK)>>29);
								}

		//! Returns largest axis
		inline_	PointComponent	LargestAxis()						const
								{
									const float* Vals = &x;
									PointComponent m = _X;
									if(Vals[_Y] > Vals[m]) m = _Y;
									if(Vals[_Z] > Vals[m]) m = _Z;
									return m;
								}

		//! Returns closest axis
		inline_	PointComponent	ClosestAxis()						const
								{
									const float* Vals = &x;
									PointComponent m = _X;
									if(AIR(Vals[_Y]) > AIR(Vals[m])) m = _Y;
									if(AIR(Vals[_Z]) > AIR(Vals[m])) m = _Z;
									return m;
								}

		//! Returns smallest axis
		inline_	PointComponent	SmallestAxis()						const
								{
									const float* Vals = &x;
									PointComponent m = _X;
									if(Vals[_Y] < Vals[m]) m = _Y;
									if(Vals[_Z] < Vals[m]) m = _Z;
									return m;
								}

		//! Refracts the point
				Point&			Refract(const Point& eye, const Point& n, float refractindex, Point& refracted);

		//! Projects the point onto a plane
				Point&			ProjectToPlane(const Plane& p);

		//! Projects the point onto the screen
				void			ProjectToScreen(float halfrenderwidth, float halfrenderheight, const Matrix4x4& mat, HPoint& projected) const;

		//! Unfolds the point onto a plane according to edge(a,b)
				Point&			Unfold(Plane& p, Point& a, Point& b);

		//! Hash function from Ville Miettinen
		inline_	udword			GetHashValue()						const
								{
									const udword* h = (const udword*)(this);
									udword f = (h[0]+h[1]*11-(h[2]*17)) & 0x7fffffff;	// avoid problems with +-0
									return (f>>22)^(f>>12)^(f);
								}

		//! Stuff magic values in the point, marking it as explicitely not used.
				void			SetNotUsed();
		//! Checks the point is marked as not used
				BOOL			IsNotUsed()							const;

		// Arithmetic operators

		//! Unary operator for Point Negate = - Point
		inline_	Point			operator-()							const		{ return Point(-x, -y, -z);							}

		//! Operator for Point Plus = Point + Point.
		inline_	Point			operator+(const Point& p)			const		{ return Point(x + p.x, y + p.y, z + p.z);			}
		//! Operator for Point Minus = Point - Point.
		inline_	Point			operator-(const Point& p)			const		{ return Point(x - p.x, y - p.y, z - p.z);			}

		//! Operator for Point Mul   = Point * Point.
		inline_	Point			operator*(const Point& p)			const		{ return Point(x * p.x, y * p.y, z * p.z);			}
		//! Operator for Point Scale = Point * float.
		inline_	Point			operator*(float s)					const		{ return Point(x * s,   y * s,   z * s );			}
		//! Operator for Point Scale = float * Point.
		inline_ friend	Point	operator*(float s, const Point& p)				{ return Point(s * p.x, s * p.y, s * p.z);			}

		//! Operator for Point Div   = Point / Point.
		inline_	Point			operator/(const Point& p)			const		{ return Point(x / p.x, y / p.y, z / p.z);			}
		//! Operator for Point Scale = Point / float.
		inline_	Point			operator/(float s)					const		{ s = 1.0f / s; return Point(x * s, y * s, z * s);	}
		//! Operator for Point Scale = float / Point.
		inline_	friend	Point	operator/(float s, const Point& p)				{ return Point(s / p.x, s / p.y, s / p.z);			}

		//! Operator for float DotProd = Point | Point.
		inline_	float			operator|(const Point& p)			const		{ return x*p.x + y*p.y + z*p.z;						}
		//! Operator for Point VecProd = Point ^ Point.
		inline_	Point			operator^(const Point& p)			const
								{
									return Point(
									y * p.z - z * p.y,
									z * p.x - x * p.z,
									x * p.y - y * p.x );
								}

		//! Operator for Point += Point.
		inline_	Point&			operator+=(const Point& p)						{ x += p.x; y += p.y; z += p.z;	return *this;		}
		//! Operator for Point += float.
		inline_	Point&			operator+=(float s)								{ x += s;   y += s;   z += s;	return *this;		}

		//! Operator for Point -= Point.
		inline_	Point&			operator-=(const Point& p)						{ x -= p.x; y -= p.y; z -= p.z;	return *this;		}
		//! Operator for Point -= float.
		inline_	Point&			operator-=(float s)								{ x -= s;   y -= s;   z -= s;	return *this;		}

		//! Operator for Point *= Point.
		inline_	Point&			operator*=(const Point& p)						{ x *= p.x; y *= p.y; z *= p.z;	return *this;		}
		//! Operator for Point *= float.
		inline_	Point&			operator*=(float s)								{ x *= s; y *= s; z *= s;		return *this;		}

		//! Operator for Point /= Point.
		inline_	Point&			operator/=(const Point& p)						{ x /= p.x; y /= p.y; z /= p.z;	return *this;		}
		//! Operator for Point /= float.
		inline_	Point&			operator/=(float s)								{ s = 1.0f/s; x *= s; y *= s; z *= s; return *this; }

		// Logical operators

		//! Operator for "if(Point==Point)"
		inline_	bool			operator==(const Point& p)			const		{ return ( (IR(x)==IR(p.x))&&(IR(y)==IR(p.y))&&(IR(z)==IR(p.z)));	}
		//! Operator for "if(Point!=Point)"
		inline_	bool			operator!=(const Point& p)			const		{ return ( (IR(x)!=IR(p.x))||(IR(y)!=IR(p.y))||(IR(z)!=IR(p.z)));	}

		// Arithmetic operators

		//! Operator for Point Mul = Point * Matrix3x3.
		inline_	Point			operator*(const Matrix3x3& mat)		const
								{
									class ShadowMatrix3x3{ public: float m[3][3]; };	// To allow inlining
									const ShadowMatrix3x3* Mat = (const ShadowMatrix3x3*)&mat;

									return Point(
									x * Mat->m[0][0] + y * Mat->m[1][0] + z * Mat->m[2][0],
									x * Mat->m[0][1] + y * Mat->m[1][1] + z * Mat->m[2][1],
									x * Mat->m[0][2] + y * Mat->m[1][2] + z * Mat->m[2][2] );
								}

		//! Operator for Point Mul = Point * Matrix4x4.
		inline_	Point			operator*(const Matrix4x4& mat)		const
								{
									class ShadowMatrix4x4{ public: float m[4][4]; };	// To allow inlining
									const ShadowMatrix4x4* Mat = (const ShadowMatrix4x4*)&mat;

									return Point(
									x * Mat->m[0][0] + y * Mat->m[1][0] + z * Mat->m[2][0] + Mat->m[3][0],
									x * Mat->m[0][1] + y * Mat->m[1][1] + z * Mat->m[2][1] + Mat->m[3][1],
									x * Mat->m[0][2] + y * Mat->m[1][2] + z * Mat->m[2][2] + Mat->m[3][2]);
								}

		//! Operator for Point *= Matrix3x3.
		inline_	Point&			operator*=(const Matrix3x3& mat)
								{
									class ShadowMatrix3x3{ public: float m[3][3]; };	// To allow inlining
									const ShadowMatrix3x3* Mat = (const ShadowMatrix3x3*)&mat;

									float xp = x * Mat->m[0][0] + y * Mat->m[1][0] + z * Mat->m[2][0];
									float yp = x * Mat->m[0][1] + y * Mat->m[1][1] + z * Mat->m[2][1];
									float zp = x * Mat->m[0][2] + y * Mat->m[1][2] + z * Mat->m[2][2];

									x = xp;	y = yp;	z = zp;

									return *this;
								}

		//! Operator for Point *= Matrix4x4.
		inline_	Point&			operator*=(const Matrix4x4& mat)
								{
									class ShadowMatrix4x4{ public: float m[4][4]; };	// To allow inlining
									const ShadowMatrix4x4* Mat = (const ShadowMatrix4x4*)&mat;

									float xp = x * Mat->m[0][0] + y * Mat->m[1][0] + z * Mat->m[2][0] + Mat->m[3][0];
									float yp = x * Mat->m[0][1] + y * Mat->m[1][1] + z * Mat->m[2][1] + Mat->m[3][1];
									float zp = x * Mat->m[0][2] + y * Mat->m[1][2] + z * Mat->m[2][2] + Mat->m[3][2];

									x = xp;	y = yp;	z = zp;

									return *this;
								}

		// Cast operators

		//! Cast a Point to a HPoint. w is set to zero.
								operator	HPoint()				const;

		inline_					operator	const	float*() const	{ return &x; }
		inline_					operator			float*()		{ return &x; }

		public:
				float			x, y, z;
	};

	FUNCTION void Normalize1(Point& a);
	FUNCTION void Normalize2(Point& a);

#endif //__ICEPOINT_H__

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -