⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 spd_sdram.c.svn-base

📁 u-boot for S3c2443 processor
💻 SVN-BASE
📖 第 1 页 / 共 4 页
字号:
/* * (C) Copyright 2001 * Bill Hunter, Wave 7 Optics, williamhunter@attbi.com * * Based on code by: * * Kenneth Johansson ,Ericsson AB. * kenneth.johansson@etx.ericsson.se * * hacked up by bill hunter. fixed so we could run before * serial_init and console_init. previous version avoided this by * running out of cache memory during serial/console init, then running * this code later. * * (C) Copyright 2002 * Jun Gu, Artesyn Technology, jung@artesyncp.com * Support for IBM 440 based on OpenBIOS draminit.c from IBM. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */#include <common.h>#include <asm/processor.h>#include <i2c.h>#include <ppc4xx.h>#ifdef CONFIG_SPD_EEPROM/* * Set default values */#ifndef	CFG_I2C_SPEED#define	CFG_I2C_SPEED	50000#endif#ifndef	CFG_I2C_SLAVE#define	CFG_I2C_SLAVE	0xFE#endif#ifndef  CONFIG_440              /* for 405 WALNUT board */#define  SDRAM0_CFG_DCE          0x80000000#define  SDRAM0_CFG_SRE          0x40000000#define  SDRAM0_CFG_PME          0x20000000#define  SDRAM0_CFG_MEMCHK       0x10000000#define  SDRAM0_CFG_REGEN        0x08000000#define  SDRAM0_CFG_ECCDD        0x00400000#define  SDRAM0_CFG_EMDULR       0x00200000#define  SDRAM0_CFG_DRW_SHIFT    (31-6)#define  SDRAM0_CFG_BRPF_SHIFT   (31-8)#define  SDRAM0_TR_CASL_SHIFT    (31-8)#define  SDRAM0_TR_PTA_SHIFT     (31-13)#define  SDRAM0_TR_CTP_SHIFT     (31-15)#define  SDRAM0_TR_LDF_SHIFT     (31-17)#define  SDRAM0_TR_RFTA_SHIFT    (31-29)#define  SDRAM0_TR_RCD_SHIFT     (31-31)#define  SDRAM0_RTR_SHIFT        (31-15)#define  SDRAM0_ECCCFG_SHIFT     (31-11)/* SDRAM0_CFG enable macro  */#define SDRAM0_CFG_BRPF(x) ( ( x & 0x3)<< SDRAM0_CFG_BRPF_SHIFT )#define SDRAM0_BXCR_SZ_MASK  0x000e0000#define SDRAM0_BXCR_AM_MASK  0x0000e000#define SDRAM0_BXCR_SZ_SHIFT (31-14)#define SDRAM0_BXCR_AM_SHIFT (31-18)#define SDRAM0_BXCR_SZ(x)  ( (( x << SDRAM0_BXCR_SZ_SHIFT) & SDRAM0_BXCR_SZ_MASK) )#define SDRAM0_BXCR_AM(x)  ( (( x << SDRAM0_BXCR_AM_SHIFT) & SDRAM0_BXCR_AM_MASK) )#ifdef CONFIG_SPDDRAM_SILENT# define SPD_ERR(x) do { return 0; } while (0)#else# define SPD_ERR(x) do { printf(x); return(0); } while (0)#endif#define sdram_HZ_to_ns(hertz) (1000000000/(hertz))/* function prototypes */int spd_read(uint addr);/* * This function is reading data from the DIMM module EEPROM over the SPD bus * and uses that to program the sdram controller. * * This works on boards that has the same schematics that the IBM walnut has. * * Input: null for default I2C spd functions or a pointer to a custom function * returning spd_data. */long int spd_sdram(int(read_spd)(uint addr)){	int bus_period,tmp,row,col;	int total_size,bank_size,bank_code;	int ecc_on;	int mode;	int bank_cnt;	int sdram0_pmit=0x07c00000;#ifndef CONFIG_405EP /* not on PPC405EP */	int sdram0_besr0=-1;	int sdram0_besr1=-1;	int sdram0_eccesr=-1;#endif	int sdram0_ecccfg;	int sdram0_rtr=0;	int sdram0_tr=0;	int sdram0_b0cr;	int sdram0_b1cr;	int sdram0_b2cr;	int sdram0_b3cr;	int sdram0_cfg=0;	int t_rp;	int t_rcd;	int t_ras;	int t_rc;	int min_cas;	if(read_spd == 0){		read_spd=spd_read;	/*	 * Make sure I2C controller is initialized	 * before continuing.	 */		i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);	}	/*	 * Calculate the bus period, we do it this	 * way to minimize stack utilization.	 */#ifndef CONFIG_405EP	tmp = (mfdcr(pllmd) >> (31-6)) & 0xf;	/* get FBDV bits */	tmp = CONFIG_SYS_CLK_FREQ * tmp;	/* get plb freq */#else	{		unsigned long freqCPU;		unsigned long pllmr0;		unsigned long pllmr1;		unsigned long pllFbkDiv;		unsigned long pllPlbDiv;		unsigned long pllmr0_ccdv;		/*		 * Read PLL Mode registers		 */		pllmr0 = mfdcr (cpc0_pllmr0);		pllmr1 = mfdcr (cpc0_pllmr1);		pllFbkDiv = ((pllmr1 & PLLMR1_FBMUL_MASK) >> 20);		if (pllFbkDiv == 0) {			pllFbkDiv = 16;		}		pllPlbDiv = ((pllmr0 & PLLMR0_CPU_TO_PLB_MASK) >> 16) + 1;		/*		 * Determine CPU clock frequency		 */		pllmr0_ccdv = ((pllmr0 & PLLMR0_CPU_DIV_MASK) >> 20) + 1;		if (pllmr1 & PLLMR1_SSCS_MASK) {			freqCPU = (CONFIG_SYS_CLK_FREQ * pllFbkDiv) / pllmr0_ccdv;		} else {			freqCPU = CONFIG_SYS_CLK_FREQ / pllmr0_ccdv;		}		/*		 * Determine PLB clock frequency		 */		tmp = freqCPU / pllPlbDiv;	}#endif	bus_period = sdram_HZ_to_ns(tmp);	/* get sdram speed */	/* Make shure we are using SDRAM */	if (read_spd(2) != 0x04){	  SPD_ERR("SDRAM - non SDRAM memory module found\n");	  }/*------------------------------------------------------------------  configure memory timing register  data from DIMM:  27	IN Row Precharge Time ( t RP)  29	MIN RAS to CAS Delay ( t RCD)  127   Component and Clock Detail ,clk0-clk3, junction temp, CAS  -------------------------------------------------------------------*/     /*      * first figure out which cas latency mode to use      * use the min supported mode      */	tmp = read_spd(127) & 0x6;     if(tmp == 0x02){      	   /* only cas = 2 supported */	  min_cas = 2;/*     	  t_ck = read_spd(9); *//*     	  t_ac = read_spd(10); */	  }     else if (tmp == 0x04){         /* only cas = 3 supported */	  min_cas = 3;/*     	  t_ck = read_spd(9); *//*     	  t_ac = read_spd(10); */	  }     else if (tmp == 0x06){         /* 2,3 supported, so use 2 */	  min_cas = 2;/*     	  t_ck = read_spd(23); *//*     	  t_ac = read_spd(24); */	  }     else {	     SPD_ERR("SDRAM - unsupported CAS latency \n");	}     /* get some timing values, t_rp,t_rcd,t_ras,t_rc     */     t_rp = read_spd(27);     t_rcd = read_spd(29);     t_ras = read_spd(30);     t_rc = t_ras + t_rp;     /* The following timing calcs subtract 1 before deviding.      * this has effect of using ceiling instead of floor rounding,      * and also subtracting 1 to convert number to reg value      */     /* set up CASL */     sdram0_tr = (min_cas - 1) << SDRAM0_TR_CASL_SHIFT;     /* set up PTA */     sdram0_tr |= (((t_rp - 1)/bus_period) & 0x3) << SDRAM0_TR_PTA_SHIFT;     /* set up CTP */     tmp = ((t_rc - t_rcd - t_rp -1) / bus_period) & 0x3;     if(tmp<1) tmp=1;     sdram0_tr |= tmp << SDRAM0_TR_CTP_SHIFT;     /* set LDF	= 2 cycles, reg value = 1 */     sdram0_tr |= 1 << SDRAM0_TR_LDF_SHIFT;     /* set RFTA = t_rfc/bus_period, use t_rfc = t_rc */	tmp = ( (t_rc - 1) / bus_period)-3;	if(tmp<0)tmp=0;	if(tmp>6)tmp=6;	sdram0_tr |= tmp << SDRAM0_TR_RFTA_SHIFT;     /* set RCD = t_rcd/bus_period*/     sdram0_tr |= (((t_rcd - 1) / bus_period) &0x3) << SDRAM0_TR_RCD_SHIFT ;/*------------------------------------------------------------------  configure RTR register  -------------------------------------------------------------------*/     row = read_spd(3);     col = read_spd(4);     tmp = read_spd(12) & 0x7f ; /* refresh type less self refresh bit */     switch(tmp){	case 0x00:	  tmp=15625;	  break;	case 0x01:	  tmp=15625/4;	  break;	case 0x02:	  tmp=15625/2;	  break;	case 0x03:	  tmp=15625*2;	  break;	case 0x04:	  tmp=15625*4;	  break;	case 0x05:	  tmp=15625*8;	  break;	default:	  SPD_ERR("SDRAM - Bad refresh period \n");	}	/* convert from nsec to bus cycles */	tmp = tmp/bus_period;	sdram0_rtr = (tmp & 0x3ff8)<<  SDRAM0_RTR_SHIFT;/*------------------------------------------------------------------  determine the number of banks used  -------------------------------------------------------------------*/	/* byte 7:6 is module data width */	if(read_spd(7) != 0)	    SPD_ERR("SDRAM - unsupported module width\n");	tmp = read_spd(6);	if (tmp < 32)	    SPD_ERR("SDRAM - unsupported module width\n");	else if (tmp < 64)	    bank_cnt=1;		/* one bank per sdram side */	else if (tmp < 73)	    bank_cnt=2;	/* need two banks per side */	else if (tmp < 161)	    bank_cnt=4;	/* need four banks per side */	else	    SPD_ERR("SDRAM - unsupported module width\n");	/* byte 5 is the module row count (refered to as dimm "sides") */	tmp = read_spd(5);	if(tmp==1);	else if(tmp==2) bank_cnt *=2;	else if(tmp==4) bank_cnt *=4;	else bank_cnt = 8; 		/* 8 is an error code */	if(bank_cnt > 4)	/* we only have 4 banks to work with */	    SPD_ERR("SDRAM - unsupported module rows for this width\n");	/* now check for ECC ability of module. We only support ECC	 *   on 32 bit wide devices with 8 bit ECC.	 */	if ( (read_spd(11)==2) && (read_spd(6)==40) && (read_spd(14)==8) ){	   sdram0_ecccfg=0xf<<SDRAM0_ECCCFG_SHIFT;	   ecc_on = 1;	}	else{	   sdram0_ecccfg=0;	   ecc_on = 0;	}/*------------------------------------------------------------------	calculate total size  -------------------------------------------------------------------*/	/* calculate total size and do sanity check */	tmp = read_spd(31);	total_size=1<<22;	/* total_size = 4MB */	/* now multiply 4M by the smallest device row density */	/* note that we don't support asymetric rows */	while (((tmp & 0x0001) == 0) && (tmp != 0)){	    total_size= total_size<<1;	    tmp = tmp>>1;	    }	total_size *= read_spd(5);	/* mult by module rows (dimm sides) *//*------------------------------------------------------------------	map  rows * cols * banks to a mode -------------------------------------------------------------------*/	switch( row )	{	case 11:		switch ( col )		{		case 8:			mode=4; /* mode 5 */			break;		case 9:		case 10:			mode=0; /* mode 1 */			break;		default:		SPD_ERR("SDRAM - unsupported mode\n");		}		break;	case 12:		switch ( col )		{		case 8:			mode=3; /* mode 4 */			break;		case 9:		case 10:			mode=1; /* mode 2 */			break;		default:		SPD_ERR("SDRAM - unsupported mode\n");		}		break;	case 13:		switch ( col )		{		case 8:			mode=5; /* mode 6 */			break;		case 9:		case 10:			if (read_spd(17) ==2 )				mode=6; /* mode 7 */			else				mode=2; /* mode 3 */			break;		case 11:			mode=2; /* mode 3 */			break;		default:		SPD_ERR("SDRAM - unsupported mode\n");		}		break;	default:	     SPD_ERR("SDRAM - unsupported mode\n");	}/*------------------------------------------------------------------	using the calculated values, compute the bank	config register values. -------------------------------------------------------------------*/	sdram0_b1cr = 0;	sdram0_b2cr = 0;	sdram0_b3cr = 0;	/* compute the size of each bank */	bank_size = total_size / bank_cnt;	/* convert bank size to bank size code for ppc4xx		by takeing log2(bank_size) - 22 */	tmp=bank_size; 		/* start with tmp = bank_size */	bank_code=0;			/* and bank_code = 0 */	while (tmp>1){ 		/* this takes log2 of tmp */		bank_code++;		/* and stores result in bank_code */		tmp=tmp>>1;		}				/* bank_code is now log2(bank_size) */	bank_code-=22;				/* subtract 22 to get the code */	tmp = SDRAM0_BXCR_SZ(bank_code) | SDRAM0_BXCR_AM(mode) | 1;	sdram0_b0cr = (bank_size) * 0 | tmp;#ifndef CONFIG_405EP /* not on PPC405EP */	if(bank_cnt>1) sdram0_b2cr = (bank_size) * 1 | tmp;	if(bank_cnt>2) sdram0_b1cr = (bank_size) * 2 | tmp;	if(bank_cnt>3) sdram0_b3cr = (bank_size) * 3 | tmp;#else	/* PPC405EP chip only supports two SDRAM banks */	if(bank_cnt>1) sdram0_b1cr = (bank_size) * 1 | tmp;	if(bank_cnt>2) total_size -= (bank_size) * (bank_cnt - 2);#endif	/*	 *   enable sdram controller DCE=1	 *  enable burst read prefetch to 32 bytes BRPF=2	 *  leave other functions off	 *//*------------------------------------------------------------------	now that we've done our calculations, we are ready to

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -