📄 dsp280x_ecan.c
字号:
// TI File $Revision:: 1 $
//###########################################################################
//
// FILE: DSP280x_ECan.c
//
// TITLE: DSP280x Enhanced CAN Initialization & Support Functions.
//
//###########################################################################
//
// Ver | dd mmm yyyy | Who | Description of changes
// =====|=============|======|===============================================
// 0.02| 03 10 2004 | H.J. | Added initialization routines for eCANA/eCANB
// 0.03| 08 16 2004 | H.J. | Added code to configure all GPIO pins for CAN operation
//###########################################################################
#include "DSP280x_Device.h" // DSP28 Headerfile Include File
#include "DSP280x_Examples.h" // DSP28 Examples Include File
//---------------------------------------------------------------------------
// InitECan:
//---------------------------------------------------------------------------
// This function initializes the eCAN module to a known state.
//
void InitECan(void)
{
/* Create a shadow register structure for the CAN control registers. This is
needed, since, only 32-bit access is allowed to these registers. 16-bit access
to these registers could potentially corrupt the register contents. This is
especially true while writing to a bit (or group of bits) among bits 16 - 31 */
struct ECAN_REGS ECanaShadow;
struct ECAN_REGS ECanbShadow;
asm(" EALLOW");
/* Disable Watchdog */
DisableDog();
/* Enable peripheral clocks */
InitPeripheralClocks();
/* Set PLL multiplication factor */
InitPll(0xA);
asm(" EALLOW");
/* Configure eCAN pins using GPIO regs*/
// Caution: Only one GPIO pin should be enabled for CANTXB operation. Ditto for CANRXB.
// Comment out other unwanted lines.
//GpioCtrlRegs.GPAMUX1.bit.GPIO8 = 2; // Configure GPIO8 for CANTXB operation
//GpioCtrlRegs.GPAMUX1.bit.GPIO10 = 2; // Configure GPIO10 for CANRXB operation
GpioCtrlRegs.GPAMUX1.bit.GPIO12 = 2; // Configure GPIO12 for CANTXB operation
GpioCtrlRegs.GPAMUX1.bit.GPIO13 = 2; // Configure GPIO13 for CANRXB operation
//GpioCtrlRegs.GPAMUX1.bit.GPIO16 = 2; // Configure GPIO16 for CANTXB operation
//GpioCtrlRegs.GPAMUX1.bit.GPIO17 = 2; // Configure GPIO17 for CANRXB operation
//GpioCtrlRegs.GPAMUX1.bit.GPIO20 = 1; // Configure GPIO20 for CANTXB operation
//GpioCtrlRegs.GPAMUX1.bit.GPIO21 = 1; // Configure GPIO21 for CANRXB operation
GpioCtrlRegs.GPAMUX2.bit.GPIO30 = 1; // Configure GPIO30 for CANTXA operation
GpioCtrlRegs.GPAMUX2.bit.GPIO31 = 1; // Configure GPIO31 for CANRXA operation
/* Configure eCAN RX and TX pins for eCAN transmissions using eCAN regs*/
ECanaRegs.CANTIOC.bit.TXFUNC = 1;
ECanaRegs.CANRIOC.bit.RXFUNC = 1;
ECanbRegs.CANTIOC.bit.TXFUNC = 1;
ECanbRegs.CANRIOC.bit.RXFUNC = 1;
/* Configure eCAN for HECC mode - (reqd to access mailboxes 16 thru 31) */
// HECC mode also enables time-stamping feature
ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
ECanaShadow.CANMC.bit.SCB = 1;
ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
ECanbShadow.CANMC.all = ECanbRegs.CANMC.all;
ECanbShadow.CANMC.bit.SCB = 1;
ECanbRegs.CANMC.all = ECanbShadow.CANMC.all;
/* Initialize all bits of 'Master Control Field' to zero */
// Some bits of MSGCTRL register come up in an unknown state. For proper operation,
// all bits (including reserved bits) of MSGCTRL must be initialized to zero
ECanaMboxes.MBOX0.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX1.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX2.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX3.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX4.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX5.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX6.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX7.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX8.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX9.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX10.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX11.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX12.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX13.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX14.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX15.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX16.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX17.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX18.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX19.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX20.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX21.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX22.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX23.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX24.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX25.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX26.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX27.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX28.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX29.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX30.MSGCTRL.all = 0x00000000;
ECanaMboxes.MBOX31.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX0.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX1.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX2.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX3.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX4.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX5.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX6.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX7.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX8.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX9.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX10.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX11.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX12.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX13.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX14.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX15.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX16.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX17.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX18.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX19.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX20.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX21.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX22.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX23.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX24.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX25.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX26.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX27.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX28.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX29.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX30.MSGCTRL.all = 0x00000000;
ECanbMboxes.MBOX31.MSGCTRL.all = 0x00000000;
// TAn, RMPn, GIFn bits are all zero upon reset and are cleared again
// as a matter of precaution.
/* Clear all TAn bits */
ECanaRegs.CANTA.all = 0xFFFFFFFF;
ECanbRegs.CANTA.all = 0xFFFFFFFF;
/* Clear all RMPn bits */
ECanaRegs.CANRMP.all = 0xFFFFFFFF;
ECanbRegs.CANRMP.all = 0xFFFFFFFF;
/* Clear all interrupt flag bits */
ECanaRegs.CANGIF0.all = 0xFFFFFFFF;
ECanaRegs.CANGIF1.all = 0xFFFFFFFF;
ECanbRegs.CANGIF0.all = 0xFFFFFFFF;
ECanbRegs.CANGIF1.all = 0xFFFFFFFF;
/* Configure bit timing parameters for eCANA*/
ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
ECanaShadow.CANMC.bit.CCR = 1 ; // Set CCR = 1
ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
while(ECanaRegs.CANES.bit.CCE != 1 ) {} // Wait for CCE bit to be set..
ECanaRegs.CANBTC.bit.BRPREG = 0;
ECanaRegs.CANBTC.bit.TSEG2REG = 3;
ECanaRegs.CANBTC.bit.TSEG1REG = 4;
ECanaRegs.CANBTC.bit.SAM = 1;
ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
ECanaShadow.CANMC.bit.CCR = 0 ; // Set CCR = 0
ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
while(ECanaRegs.CANES.bit.CCE == !0 ) {} // Wait for CCE bit to be cleared..
/* Configure bit timing parameters for eCANB*/
ECanbShadow.CANMC.all = ECanbRegs.CANMC.all;
ECanbShadow.CANMC.bit.CCR = 1 ; // Set CCR = 1
ECanbRegs.CANMC.all = ECanbShadow.CANMC.all;
while(ECanbRegs.CANES.bit.CCE != 1 ) {} // Wait for CCE bit to be set..
ECanbRegs.CANBTC.bit.BRPREG = 0;
ECanbRegs.CANBTC.bit.TSEG2REG = 3;
ECanbRegs.CANBTC.bit.TSEG1REG = 4;
ECanbRegs.CANBTC.bit.SAM = 1;
ECanbShadow.CANMC.all = ECanbRegs.CANMC.all;
ECanbShadow.CANMC.bit.CCR = 0 ; // Set CCR = 0
ECanbRegs.CANMC.all = ECanbShadow.CANMC.all;
while(ECanbRegs.CANES.bit.CCE == !0 ) {} // Wait for CCE bit to be cleared..
/* Disable all Mailboxes */
ECanaRegs.CANME.all = 0; // Required before writing the MSGIDs
ECanbRegs.CANME.all = 0; // Required before writing the MSGIDs
}
/***************************************************/
/* Bit configuration parameters for 150 MHz SYSCLKOUT*/
/***************************************************/
/*
The table below shows how BRP field must be changed to achieve different bit
rates with a BT of 15, for a 80% SP:
---------------------------------------------------
BT = 15, TSEG1 = 10, TSEG2 = 2, Sampling Point = 80%
---------------------------------------------------
1 Mbps : BRP+1 = 10 : CAN clock = 15 MHz
500 kbps : BRP+1 = 20 : CAN clock = 7.5 MHz
250 kbps : BRP+1 = 40 : CAN clock = 3.75 MHz
125 kbps : BRP+1 = 80 : CAN clock = 1.875 MHz
100 kbps : BRP+1 = 100 : CAN clock = 1.5 MHz
50 kbps : BRP+1 = 200 : CAN clock = 0.75 MHz
The table below shows how to achieve different sampling points with a BT of 25:
-------------------------------------------------------------
Achieving desired SP by changing TSEG1 & TSEG2 with BT = 25
-------------------------------------------------------------
TSEG1 = 18, TSEG2 = 4, SP = 80%
TSEG1 = 17, TSEG2 = 5, SP = 76%
TSEG1 = 16, TSEG2 = 6, SP = 72%
TSEG1 = 15, TSEG2 = 7, SP = 68%
TSEG1 = 14, TSEG2 = 8, SP = 64%
The table below shows how BRP field must be changed to achieve different bit
rates with a BT of 25, for the sampling points shown above:
1 Mbps : BRP+1 = 6
500 kbps : BRP+1 = 12
250 kbps : BRP+1 = 24
125 kbps : BRP+1 = 48
100 kbps : BRP+1 = 60
50 kbps : BRP+1 = 120
*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -