⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sbr_hfgen.c

📁 tcpmp.src.0.72RC1 优秀的多媒体播放器TCPMP的源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
/*** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com**  ** This program is free software; you can redistribute it and/or modify** it under the terms of the GNU General Public License as published by** the Free Software Foundation; either version 2 of the License, or** (at your option) any later version.** ** This program is distributed in the hope that it will be useful,** but WITHOUT ANY WARRANTY; without even the implied warranty of** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the** GNU General Public License for more details.** ** You should have received a copy of the GNU General Public License** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.**** Any non-GPL usage of this software or parts of this software is strictly** forbidden.**** Commercial non-GPL licensing of this software is possible.** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.**** $Id: sbr_hfgen.c,v 1.22 2004/09/08 09:43:11 gcp Exp $**//* High Frequency generation */#include "common.h"#include "structs.h"#ifdef SBR_DEC#include "sbr_syntax.h"#include "sbr_hfgen.h"#include "sbr_fbt.h"/* static function declarations */#ifdef SBR_LOW_POWERstatic void calc_prediction_coef_lp(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64],                                    complex_t *alpha_0, complex_t *alpha_1, real_t *rxx);static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg);#elsestatic void calc_prediction_coef(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64],                                 complex_t *alpha_0, complex_t *alpha_1, uint8_t k);#endifstatic void calc_chirp_factors(sbr_info *sbr, uint8_t ch);static void patch_construction(sbr_info *sbr);void hf_generation(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64],                   qmf_t Xhigh[MAX_NTSRHFG][64]#ifdef SBR_LOW_POWER                   ,real_t *deg#endif                   ,uint8_t ch){    uint8_t l, i, x;    ALIGN complex_t alpha_0[64], alpha_1[64];#ifdef SBR_LOW_POWER    ALIGN real_t rxx[64];#endif    uint8_t offset = sbr->tHFAdj;    uint8_t first = sbr->t_E[ch][0];    uint8_t last = sbr->t_E[ch][sbr->L_E[ch]];    calc_chirp_factors(sbr, ch);#ifdef SBR_LOW_POWER    memset(deg, 0, 64*sizeof(real_t));#endif    if ((ch == 0) && (sbr->Reset))        patch_construction(sbr);    /* calculate the prediction coefficients */#ifdef SBR_LOW_POWER    calc_prediction_coef_lp(sbr, Xlow, alpha_0, alpha_1, rxx);    calc_aliasing_degree(sbr, rxx, deg);#endif    /* actual HF generation */    for (i = 0; i < sbr->noPatches; i++)    {        for (x = 0; x < sbr->patchNoSubbands[i]; x++)        {            real_t a0_r, a0_i, a1_r, a1_i;            real_t bw, bw2;            uint8_t q, p, k, g;            /* find the low and high band for patching */            k = sbr->kx + x;            for (q = 0; q < i; q++)            {                k += sbr->patchNoSubbands[q];            }            p = sbr->patchStartSubband[i] + x;#ifdef SBR_LOW_POWER            if (x != 0 /*x < sbr->patchNoSubbands[i]-1*/)                deg[k] = deg[p];            else                deg[k] = 0;#endif            g = sbr->table_map_k_to_g[k];            bw = sbr->bwArray[ch][g];            bw2 = MUL_C(bw, bw);            /* do the patching */            /* with or without filtering */            if (bw2 > 0)            {                real_t temp1_r, temp2_r, temp3_r;#ifndef SBR_LOW_POWER                real_t temp1_i, temp2_i, temp3_i;                calc_prediction_coef(sbr, Xlow, alpha_0, alpha_1, p);#endif                a0_r = MUL_C(RE(alpha_0[p]), bw);                a1_r = MUL_C(RE(alpha_1[p]), bw2);#ifndef SBR_LOW_POWER                a0_i = MUL_C(IM(alpha_0[p]), bw);                a1_i = MUL_C(IM(alpha_1[p]), bw2);#endif            	temp2_r = QMF_RE(Xlow[first - 2 + offset][p]);            	temp3_r = QMF_RE(Xlow[first - 1 + offset][p]);#ifndef SBR_LOW_POWER            	temp2_i = QMF_IM(Xlow[first - 2 + offset][p]);            	temp3_i = QMF_IM(Xlow[first - 1 + offset][p]);#endif				for (l = first; l < last; l++)                {                	temp1_r = temp2_r;                	temp2_r = temp3_r;                	temp3_r = QMF_RE(Xlow[l + offset][p]);#ifndef SBR_LOW_POWER                	temp1_i = temp2_i;                	temp2_i = temp3_i;                    temp3_i = QMF_IM(Xlow[l + offset][p]);#endif#ifdef SBR_LOW_POWER                    QMF_RE(Xhigh[l + offset][k]) =                        temp3_r                      +(MUL_R(a0_r, temp2_r) +                        MUL_R(a1_r, temp1_r));#else                    QMF_RE(Xhigh[l + offset][k]) =                        temp3_r                      +(MUL_R(a0_r, temp2_r) -                        MUL_R(a0_i, temp2_i) +                        MUL_R(a1_r, temp1_r) -                        MUL_R(a1_i, temp1_i));                    QMF_IM(Xhigh[l + offset][k]) =                        temp3_i                      +(MUL_R(a0_i, temp2_r) +                        MUL_R(a0_r, temp2_i) +                        MUL_R(a1_i, temp1_r) +                        MUL_R(a1_r, temp1_i));#endif                }            } else {                for (l = first; l < last; l++)                {                    QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]);#ifndef SBR_LOW_POWER                    QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]);#endif                }            }        }    }    if (sbr->Reset)    {        limiter_frequency_table(sbr);    }}typedef struct{    complex_t r01;    complex_t r02;    complex_t r11;    complex_t r12;    complex_t r22;    real_t det;} acorr_coef;#ifdef SBR_LOW_POWERstatic void auto_correlation(sbr_info *sbr, acorr_coef *ac,                             qmf_t buffer[MAX_NTSRHFG][64],                             uint8_t bd, uint8_t len){    real_t r01 = 0, r02 = 0, r11 = 0;    int8_t j;    uint8_t offset = sbr->tHFAdj;#ifdef FIXED_POINT    const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f);    uint32_t maxi = 0;    uint32_t pow2, exp;#else    const real_t rel = 1 / (1 + 1e-6f);#endif#ifdef FIXED_POINT    mask = 0;    for (j = (offset-2); j < (len + offset); j++)    {        real_t x;        x = QMF_RE(buffer[j][bd])>>REAL_BITS;        mask |= x ^ (x >> 31);    }    exp = wl_min_lzc(mask);    /* improves accuracy */    if (exp > 0)        exp -= 1;    for (j = offset; j < len + offset; j++)    {        real_t buf_j = ((QMF_RE(buffer[j][bd])+(1<<(exp-1)))>>exp);        real_t buf_j_1 = ((QMF_RE(buffer[j-1][bd])+(1<<(exp-1)))>>exp);        real_t buf_j_2 = ((QMF_RE(buffer[j-2][bd])+(1<<(exp-1)))>>exp);        /* normalisation with rounding */        r01 += MUL_R(buf_j, buf_j_1);        r02 += MUL_R(buf_j, buf_j_2);        r11 += MUL_R(buf_j_1, buf_j_1);    }    RE(ac->r12) = r01 -        MUL_R(((QMF_RE(buffer[len+offset-1][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[len+offset-2][bd])+(1<<(exp-1)))>>exp)) +        MUL_R(((QMF_RE(buffer[offset-1][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[offset-2][bd])+(1<<(exp-1)))>>exp));    RE(ac->r22) = r11 -        MUL_R(((QMF_RE(buffer[len+offset-2][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[len+offset-2][bd])+(1<<(exp-1)))>>exp)) +        MUL_R(((QMF_RE(buffer[offset-2][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[offset-2][bd])+(1<<(exp-1)))>>exp));#else    for (j = offset; j < len + offset; j++)    {        r01 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-1][bd]);        r02 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-2][bd]);        r11 += QMF_RE(buffer[j-1][bd]) * QMF_RE(buffer[j-1][bd]);    }    RE(ac->r12) = r01 -        QMF_RE(buffer[len+offset-1][bd]) * QMF_RE(buffer[len+offset-2][bd]) +        QMF_RE(buffer[offset-1][bd]) * QMF_RE(buffer[offset-2][bd]);    RE(ac->r22) = r11 -        QMF_RE(buffer[len+offset-2][bd]) * QMF_RE(buffer[len+offset-2][bd]) +        QMF_RE(buffer[offset-2][bd]) * QMF_RE(buffer[offset-2][bd]);#endif    RE(ac->r01) = r01;    RE(ac->r02) = r02;    RE(ac->r11) = r11;    ac->det = MUL_R(RE(ac->r11), RE(ac->r22)) - MUL_F(MUL_R(RE(ac->r12), RE(ac->r12)), rel);}#elsestatic void auto_correlation(sbr_info *sbr, acorr_coef *ac, qmf_t buffer[MAX_NTSRHFG][64],                             uint8_t bd, uint8_t len){    real_t r01r = 0, r01i = 0, r02r = 0, r02i = 0, r11r = 0;    real_t temp1_r, temp1_i, temp2_r, temp2_i, temp3_r, temp3_i, temp4_r, temp4_i, temp5_r, temp5_i;#ifdef FIXED_POINT    const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f);    uint32_t mask, exp;    real_t pow2_to_exp;#else    const real_t rel = 1 / (1 + 1e-6f);#endif    int8_t j;    uint8_t offset = sbr->tHFAdj;#ifdef FIXED_POINT    mask = 0;    for (j = (offset-2); j < (len + offset); j++)    {        real_t x;        x = QMF_RE(buffer[j][bd])>>REAL_BITS;        mask |= x ^ (x >> 31);        x = QMF_IM(buffer[j][bd])>>REAL_BITS;        mask |= x ^ (x >> 31);    }    exp = wl_min_lzc(mask);    /* improves accuracy */    if (exp > 0)        exp -= 1;       pow2_to_exp = 1<<(exp-1);    temp2_r = (QMF_RE(buffer[offset-2][bd]) + pow2_to_exp) >> exp;    temp2_i = (QMF_IM(buffer[offset-2][bd]) + pow2_to_exp) >> exp;    temp3_r = (QMF_RE(buffer[offset-1][bd]) + pow2_to_exp) >> exp;    temp3_i = (QMF_IM(buffer[offset-1][bd]) + pow2_to_exp) >> exp;    // Save these because they are needed after loop    temp4_r = temp2_r;    temp4_i = temp2_i;    temp5_r = temp3_r;    temp5_i = temp3_i;    for (j = offset; j < len + offset; j++)    {    	temp1_r = temp2_r; // temp1_r = (QMF_RE(buffer[offset-2][bd] + (1<<(exp-1))) >> exp;    	temp1_i = temp2_i; // temp1_i = (QMF_IM(buffer[offset-2][bd] + (1<<(exp-1))) >> exp;    	temp2_r = temp3_r; // temp2_r = (QMF_RE(buffer[offset-1][bd] + (1<<(exp-1))) >> exp;    	temp2_i = temp3_i; // temp2_i = (QMF_IM(buffer[offset-1][bd] + (1<<(exp-1))) >> exp;        temp3_r = (QMF_RE(buffer[j][bd]) + pow2_to_exp) >> exp;        temp3_i = (QMF_IM(buffer[j][bd]) + pow2_to_exp) >> exp;        r01r += MUL_R(temp3_r, temp2_r) + MUL_R(temp3_i, temp2_i);        r01i += MUL_R(temp3_i, temp2_r) - MUL_R(temp3_r, temp2_i);        r02r += MUL_R(temp3_r, temp1_r) + MUL_R(temp3_i, temp1_i);        r02i += MUL_R(temp3_i, temp1_r) - MUL_R(temp3_r, temp1_i);        r11r += MUL_R(temp2_r, temp2_r) + MUL_R(temp2_i, temp2_i);    }    // These are actual values in temporary variable at this point    // temp1_r = (QMF_RE(buffer[len+offset-1-2][bd] + (1<<(exp-1))) >> exp;    // temp1_i = (QMF_IM(buffer[len+offset-1-2][bd] + (1<<(exp-1))) >> exp;    // temp2_r = (QMF_RE(buffer[len+offset-1-1][bd] + (1<<(exp-1))) >> exp;    // temp2_i = (QMF_IM(buffer[len+offset-1-1][bd] + (1<<(exp-1))) >> exp;    // temp3_r = (QMF_RE(buffer[len+offset-1][bd]) + (1<<(exp-1))) >> exp;    // temp3_i = (QMF_IM(buffer[len+offset-1][bd]) + (1<<(exp-1))) >> exp;    // temp4_r = (QMF_RE(buffer[offset-2][bd]) + (1<<(exp-1))) >> exp;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -