⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 iwa2.m

📁 This package is a free collection of Matlab routines for computing wave atom transforms in one, two
💻 M
字号:
function x = iwa2(c,pat,tp)% iwa2 - 2D inverse wave atom transform% -----------------% INPUT% --% c is a cell array which contains the wave atom coefficients. If% tp=='ortho', then c{j}{m1,m2}(n1,n2) is the coefficient at scale j,% frequency index (m1,m2) and spatial index (n1,n2). If% tp=='directional', then c{j,d}{m1,m2}(n1,n2) with d=1,2 are the% coefficients at scale j, frequency index (m1,m2) and spatial index% (n1,n2). If tp=='complex', then c{j,d}{m1,m2)(n1,n2) with d=1,2,3,4% are the coefficients at scale j, frequency index (m1,m2) and spatial% index (n1,n2).% --% pat specifies the type of frequency partition which satsifies% parabolic scaling relationship. pat can either be 'p' or 'q'.% --% tp is the type of tranform.% 	'ortho': orthobasis% 	'directional': real-valued frame with single oscillation direction% 	'complex': complex-valued frame% -----------------% OUTPUT% --% x is a real N-by-N matrix. N is a power of 2.% -----------------% Written by Lexing Ying and Laurent Demanet, 2007    if( ismember(tp, {'ortho','directional','complex'})==0 | ismember(pat, {'p','q','u'})==0 )    error('wrong');  end    if(strcmp(tp, 'ortho')==1)    %---------------------------------------------------------    T = 0;    for s=1:length(c)      nw = length(c{s});      for I=1:nw        for J=1:nw          T = T + prod(size(c{s}{I,J}));        end      end    end    N = sqrt(T);    H = N/2;    lst = freq_pat(H,pat);    A = N;    f = zeros(A,A);    %------------------    for s=1:length(lst)      nw = length(lst{s});      for I=0:nw-1        for J=0:nw-1          if(~isempty(c{s}{I+1,J+1}))            B = 2^(s-1);            D = 2*B;            Ict = I*B;      Jct = J*B; %starting position in freq            if(mod(I,2)==0)              Ifm = Ict-2/3*B;        Ito = Ict+4/3*B;            else              Ifm = Ict-1/3*B;        Ito = Ict+5/3*B;            end            if(mod(J,2)==0)              Jfm = Jct-2/3*B;        Jto = Jct+4/3*B;            else              Jfm = Jct-1/3*B;        Jto = Jct+5/3*B;            end            res = fft2(c{s}{I+1,J+1}) / sqrt(prod(size(c{s}{I+1,J+1}))); %res = zeros(D,D);            for id=0:1              if(id==0)                Idx = [ceil(Ifm):floor(Ito)];      Icf = kf_rt(Idx/B*pi, I);              else                Idx = [ceil(-Ito):floor(-Ifm)];      Icf = kf_lf(Idx/B*pi, I);              end              for jd=0:1                if(jd==0)                  Jdx = [ceil(Jfm):floor(Jto)];      Jcf = kf_rt(Jdx/B*pi, J);                else                  Jdx = [ceil(-Jto):floor(-Jfm)];      Jcf = kf_lf(Jdx/B*pi, J);                end                f(mod(Idx,A)+1,mod(Jdx,A)+1) = f(mod(Idx,A)+1,mod(Jdx,A)+1) + ( Icf.'*Jcf ) .* res(mod(Idx,D)+1,mod(Jdx,D)+1);              end                      end          end        end      end    end    %------------------    x = ifft2(f) * sqrt(prod(size(f)));      elseif(strcmp(tp, 'directional')==1)    %---------------------------------------------------------    c1 = c(:,1);    c2 = c(:,2);        T = 0;    for s=1:length(c1)      nw = length(c1{s});      for I=1:nw        for J=1:nw          T = T + prod(size(c1{s}{I,J}));        end      end    end    N = sqrt(T);    H = N/2;    lst = freq_pat(H,pat);    A = N;    f = zeros(A,A);    %------------------    for s=1:length(lst)      nw = length(lst{s});      for I=0:nw-1        for J=0:nw-1          if(~isempty(c1{s}{I+1,J+1}))            B = 2^(s-1);            D = 2*B;            Ict = I*B;      Jct = J*B; %starting position in freq            if(mod(I,2)==0)              Ifm = Ict-2/3*B;        Ito = Ict+4/3*B;            else              Ifm = Ict-1/3*B;        Ito = Ict+5/3*B;            end            if(mod(J,2)==0)              Jfm = Jct-2/3*B;        Jto = Jct+4/3*B;            else              Jfm = Jct-1/3*B;        Jto = Jct+5/3*B;            end                        res = fft2(c1{s}{I+1,J+1}) / sqrt(prod(size(c1{s}{I+1,J+1}))); %res = zeros(D,D);            Idx = [ceil(Ifm):floor(Ito)];      Icf = kf_rt(Idx/B*pi, I);            Jdx = [ceil(Jfm):floor(Jto)];      Jcf = kf_rt(Jdx/B*pi, J);            f(mod(Idx,A)+1,mod(Jdx,A)+1) = f(mod(Idx,A)+1,mod(Jdx,A)+1) + ( Icf.'*Jcf ) .* res(mod(Idx,D)+1,mod(Jdx,D)+1);            Idx = [ceil(-Ito):floor(-Ifm)];      Icf = kf_lf(Idx/B*pi, I);            Jdx = [ceil(-Jto):floor(-Jfm)];      Jcf = kf_lf(Jdx/B*pi, J);            f(mod(Idx,A)+1,mod(Jdx,A)+1) = f(mod(Idx,A)+1,mod(Jdx,A)+1) + ( Icf.'*Jcf ) .* res(mod(Idx,D)+1,mod(Jdx,D)+1);                        res = fft2(c2{s}{I+1,J+1}) / sqrt(prod(size(c2{s}{I+1,J+1}))); %res = zeros(D,D);            Idx = [ceil(Ifm):floor(Ito)];      Icf = kf_rt(Idx/B*pi, I);            Jdx = [ceil(-Jto):floor(-Jfm)];      Jcf = kf_lf(Jdx/B*pi, J);            f(mod(Idx,A)+1,mod(Jdx,A)+1) = f(mod(Idx,A)+1,mod(Jdx,A)+1) + ( Icf.'*Jcf ) .* res(mod(Idx,D)+1,mod(Jdx,D)+1);            Idx = [ceil(-Ito):floor(-Ifm)];      Icf = kf_lf(Idx/B*pi, I);            Jdx = [ceil(Jfm):floor(Jto)];      Jcf = kf_rt(Jdx/B*pi, J);            f(mod(Idx,A)+1,mod(Jdx,A)+1) = f(mod(Idx,A)+1,mod(Jdx,A)+1) + ( Icf.'*Jcf ) .* res(mod(Idx,D)+1,mod(Jdx,D)+1);          end        end      end    end    x = ifft2(f) * sqrt(prod(size(f)));      elseif(strcmp(tp, 'complex')==1)    %---------------------------------------------------------    c1 = c(:,1);    c2 = c(:,2);    c3 = c(:,3);    c4 = c(:,4);        T = 0;    for s=1:length(c1)      nw = length(c1{s});      for I=1:nw        for J=1:nw          T = T + prod(size(c1{s}{I,J}));        end      end    end    N = sqrt(T);    H = N/2;    lst = freq_pat(H,pat);    A = N;    f = zeros(A,A);    %------------------    for s=1:length(lst)      nw = length(lst{s});      for I=0:nw-1        for J=0:nw-1          if(~isempty(c1{s}{I+1,J+1}))            B = 2^(s-1);            D = 2*B;            Ict = I*B;      Jct = J*B; %starting position in freq            if(mod(I,2)==0)              Ifm = Ict-2/3*B;        Ito = Ict+4/3*B;            else              Ifm = Ict-1/3*B;        Ito = Ict+5/3*B;            end            if(mod(J,2)==0)              Jfm = Jct-2/3*B;        Jto = Jct+4/3*B;            else              Jfm = Jct-1/3*B;        Jto = Jct+5/3*B;            end                        res = fft2(c1{s}{I+1,J+1}) / sqrt(prod(size(c1{s}{I+1,J+1}))); %res = zeros(D,D);            Idx = [ceil(Ifm):floor(Ito)];      Icf = kf_rt(Idx/B*pi, I);            Jdx = [ceil(Jfm):floor(Jto)];      Jcf = kf_rt(Jdx/B*pi, J);            f(mod(Idx,A)+1,mod(Jdx,A)+1) = f(mod(Idx,A)+1,mod(Jdx,A)+1) + ( Icf.'*Jcf ) .* res(mod(Idx,D)+1,mod(Jdx,D)+1);                        res = fft2(c2{s}{I+1,J+1}) / sqrt(prod(size(c2{s}{I+1,J+1}))); %res = zeros(D,D);            Idx = [ceil(-Ito):floor(-Ifm)];      Icf = kf_lf(Idx/B*pi, I);            Jdx = [ceil(-Jto):floor(-Jfm)];      Jcf = kf_lf(Jdx/B*pi, J);            f(mod(Idx,A)+1,mod(Jdx,A)+1) = f(mod(Idx,A)+1,mod(Jdx,A)+1) + ( Icf.'*Jcf ) .* res(mod(Idx,D)+1,mod(Jdx,D)+1);                        res = fft2(c3{s}{I+1,J+1}) / sqrt(prod(size(c3{s}{I+1,J+1}))); %res = zeros(D,D);            Idx = [ceil(Ifm):floor(Ito)];      Icf = kf_rt(Idx/B*pi, I);            Jdx = [ceil(-Jto):floor(-Jfm)];      Jcf = kf_lf(Jdx/B*pi, J);            f(mod(Idx,A)+1,mod(Jdx,A)+1) = f(mod(Idx,A)+1,mod(Jdx,A)+1) + ( Icf.'*Jcf ) .* res(mod(Idx,D)+1,mod(Jdx,D)+1);                        res = fft2(c4{s}{I+1,J+1}) / sqrt(prod(size(c4{s}{I+1,J+1}))); %res = zeros(D,D);            Idx = [ceil(-Ito):floor(-Ifm)];      Icf = kf_lf(Idx/B*pi, I);            Jdx = [ceil(Jfm):floor(Jto)];      Jcf = kf_rt(Jdx/B*pi, J);            f(mod(Idx,A)+1,mod(Jdx,A)+1) = f(mod(Idx,A)+1,mod(Jdx,A)+1) + ( Icf.'*Jcf ) .* res(mod(Idx,D)+1,mod(Jdx,D)+1);          end        end      end    end    x = ifft2(f) * sqrt(prod(size(f)));  end  

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -