📄 pagerank.m
字号:
for j=1:k-1
beta=norm(f(:,j));
V(:,j+1)=f(:,j)/beta;
ejt=[zeros(1,j-1) beta];
Hhat=[H; ejt];
w=A(V(:,j+1));
h=V(:,1:j+1)'*w;
f(:,j+1)=w-V(:,1:j+1)*h;
H=[Hhat h];
end
% Extend Arnoldi factorization
beta=norm(f(:,k));
V(:,k+1) = f(:,k)/beta;
ejt=[zeros(1,k-1) beta];
H=[H ;ejt];
% ===================================
% pagerank_approx
% ===================================
function [x flag hist dt] = pagerank_approx(A, options)
% use the power iteration algorithm
if (options.verbose > 0)
fprintf('approximate computation...\n');
end;
tol = options.tol;
v = options.v;
maxiter = options.maxiter;
c = options.c;
bp = options.approx_bp;
subiter = options.approx_subiter;
boundary = options.approx_boundary;
n = size(A,1);
%x = v;
%if (isfield(options, 'x0'))
% x = options.x0;
%end;
if (length(find(v)) ~= n)
global_pr = 0;
else
global_pr = 1;
error('pagerank:invalidParameter',...
'approximation computations are not implemented for global pagerank yet');
end;
hist = zeros(maxiter,1);
delta = 1;
iter = 0;
dt = 0;
% set the initial set of seed pages
if (global_pr)
if (isfield(options, 'x0'))
% the seed pages come from the x0 vector if provided
p = find(options.x0);
x = x0(p);
else
% the seed pages come from the x0 vector (otherwise, choose random)
p = unique(ceil(rand(250,1)*size(P,1)));
x = ones(length(p),1)./length(p);
end;
else
% the seed pages come from the x0 vector
p = find(v);
x = ones(length(p),1)./length(p);
v = v(p);
end;
local = [];
active = p;
frontier = p;
tic;
while (iter <= maxiter && delta > tol)
% expand all pages
if (boundary == 1)
% if we are running the boundary algorithm...
[ignore sp] = sort(-x);
cs = cumsum(x(sp));
spactive = active(sp);
allexpand_ind = cs < (1-bp);
% actually, we need to add the first 0 after the last 1 in
% allexpand_ind because we need cumsum to be larger than 1-bp
allexpand_ind(min(find(allexpand_ind == 0))) = ~0;
allexpand = spactive(allexpand_ind);
toexpand = setdiff(allexpand,local);
else
%
% otherwise, just expand all pages with a sufficient tolerance
%
allexpand = active(x > bp);
toexpand = setdiff(allexpand,local);
end;
if (length(toexpand) > 0)
xp = zeros(n,1);
xp([local frontier]) = x;
local = [local toexpand];
frontier = setdiff(find(sum(A(local,:),1)), local);
active = [local frontier];
x = xp(local);
else
xp = zeros(n,1);
xp([local frontier]) = x;
x = xp(local);
end;
Lp = A(local,active);
outdegree = full(sum(Lp,2));
outdegree = [outdegree; zeros(length(frontier),1)];
siter = 0;
L = [Lp; sparse(length(frontier),length(active))];
x2 = [x; xp(frontier)];
while (siter < subiter)
y = full(c*L'*(invzero(outdegree).*x2));
omega = 1 - norm(y,1);
% the ordering of local is preseved, so these are always the
% correct vertices
y(1:length(p)) = y(1:length(p)) + omega*v;
x2 = y;
siter = siter+1;
end;
x2 = [x; xp(frontier)];
delta = norm(y-x2,1);
hist(iter+1) = delta;
if (options.verbose > 0)
fprintf('iter=%02i; delta=%0.03e expand=%i\n', iter, delta, length(toexpand));
end
x = y;
iter = iter + 1;
end;
dt = toc;
% resize hist
hist = hist(1:iter);
xpartial = x;
x = zeros(n,1);
x([local frontier]) = xpartial;
flag = 0;
if (delta > tol && iter == maxiter)
warning('pagerank:didNotConverge', ...
'The PageRank algorithm did not converge after %i iterations', ...
maxiter);
flag = 1;
end;
no% ===================================
% pagerank_eval
% ===================================
function [x flag hist dt] = pagerank_eval(P,options)
algs = {'power', 'gs', 'arnoldi', 'linsys', 'linsys'};
extra_opts = {struct(''), struct(''), struct(''), struct(''), ...
struct('linsys_solver',@(f,v,tol,its) gmres(f,v,8,tol, its))};
names = {'power', 'gs', 'arnoldi8', 'bicgstab', 'gmres8'};
v = options.v;
c = options.c;
x = cell(5,1);
flag = cell(5,1);
hist = cell(5,1);
dt = cell(5,1);
web('text://<html><body>Generating PageRank report...</body></html>','-noaddressbox');
htmlend = '</body></html>';
s = {};
s{1} = '<html><head><title>PageRank runtime report</title></head><body><h1>PageRank Report</h1>';
stemp = s;
stemp{end+1} = '<p>Generating graph statistics...</p>';
stemp{end+1} = htmlend;
A = spones(P);
d = dangling(P);
npages = size(P,1);
nedges = nnz(P);
ndangling = sum(d);
maxindeg = full(max(sum(A,1)));
maxoutdeg = full(max(sum(A,2)));
ncomp = components(A);
s{end+1} = '<h2>Graph statistics</h2>';
s{end+1} = '<table border="0" cellspacing="4">';
s{end+1} = sprintf('<tr><td style="font-weight: bold">%s:</td><td>%i</td></tr>', ...
'Number of pages', npages);
s{end+1} = sprintf('<tr><td style="font-weight: bold">%s:</td><td>%i</td></tr>', ...
'Number of edges', nedges);
s{end+1} = sprintf('<tr><td style="font-weight: bold">%s:</td><td>%i</td></tr>', ...
'Number of dangling nodes', ndangling);
s{end+1} = sprintf('<tr><td style="font-weight: bold">%s:</td><td>%i</td></tr>', ...
'Max in-degree', maxindeg);
s{end+1} = sprintf('<tr><td style="font-weight: bold">%s:</td><td>%i</td></tr>', ...
'Max out-degree', maxoutdeg);
s{end+1} = sprintf('<tr><td style="font-weight: bold">%s:</td><td>%i</td></tr>', ...
'Number of strong components:', ncomp);
s{end+1} = '</table>';
sOut = [stemp{:}];
web(['text://' sOut],'-noaddressbox');
s{end+1} = '<h2>Algorithm performance</h2>';
s{end+1} = '<table border="0">';
s{end+1} = sprintf('<tr><td style="text-align: right">%s</td><td>%0.3f</td></tr>', ...
'c = ', c);
s{end+1} = sprintf('<tr><td style="text-align: right">%s</td><td>%2.2e</td></tr>', ...
'tol = ', options.tol);
s{end+1} = sprintf('<tr><td style="text-align: right">%s</td><td>%i</td></tr>', ...
'maxiter = ', options.maxiter);
s{end+1} = '</table>';
s{end+1} = '<table border="0">';
s{end+1} = ['<tr style="text-align: left">' ...
'<th style="border-bottom:solid 1px">Algorithm</th>' ...
'<th style="border-bottom:solid 1px">Time</th>' ...
'<th style="border-bottom:solid 1px">Iterations</th>' ...
'<th style="border-bottom:solid 1px">Error</th></tr>'];
for (ii=1:length(algs))
alg = algs{ii};
extra_opt = extra_opts{ii};
name = names{ii};
stemp = s;
stemp{end+1} = '</table>';
stemp{end+1} = sprintf('<p>Solving for PageRank with %s...</p>', char(name));
stemp{end+1} = htmlend;
sOut = [stemp{:}];
web(['text://' sOut],'-noaddressbox');
extra_opt = merge_structs(struct('alg',char(alg)),extra_opt);
[pi flagi histi dti] = pagerank(P, merge_structs(extra_opt,options));
p{ii} = pi;
flag{ii} = flagi;
hist{ii} = histi;
dt{ii} = dti;
err = norm(pi - c*(pi'*P)' - c*(d'*pi)*v - (1-c)*v,1);
if (mod(ii,2) == 0)
s{end+1} = sprintf('<tr style="background-color: #cccccc"><td>%s</td><td>%.2f</td><td>%i</td><td>%2.2e</td></tr>',...
char(name), dti, length(histi), err);
else
s{end+1} = sprintf('<tr><td>%s</td><td>%.2f</td><td>%i</td><td>%2.2e</td></tr>',...
char(name), dti, length(histi), err);
end;
end
s{end+1} = '</table>';
s{end+1} = htmlend;
sOut = [s{:}];
web(['text://' sOut],'-noaddressbox');
s{end+1} = sprintf('<tr><td>%s</td><td></td><td></td><td></td></tr>',char(name));
%
% plot the time histogram
%
figure(1);
close(1);
figure(1);
dts = cell2mat(dt);
flags = cell2mat(flag);
h2 = bar(dts.*(flags==0));
set(h2,'FaceColor',[1 1 1]);
set(h2,'LineWidth',2.0);
set(gca,'XTick', 1:length(algs));
set(gca,'XTickLabel',names);
ylabel('time (sec)');
%
% plot the history results
%
figure(2);
close(2);
figure(2);
lso = get(0,'DefaultAxesLineStyleOrder');
lsc = get(0,'DefaultAxesColorOrder');
lso = {'o-', 'x:', '+-.', 's--', 'd-'};
nlso = length(lso);
curlso = 0;
nlsc = length(lsc);
curlsc = 0;
for ii=1:length(algs)
histi = hist{ii};
%legendname = fn{ii};
%line(1:length(mrval.hist), mrval.hist);
semilogy(1:length(histi),histi,...
lso{mod(curlso,nlso)+1}, ...
'Color',lsc(mod(curlsc,nlsc)+1,:),...
'MarkerSize',3);
hold on;
curlso = curlso+1;
curlsc = curlsc+1;
end;
title('PageRank algorithm convergence (WARNING: DIFFERENT Y-SCALES)');
xlabel('iteration')';
ylabel('convergence measure');
legend(names{:});
function S = merge_structs(A, B)
% MERGE_STRUCTS Merge two structures.
%
% S = merge_structs(A, B) makes the structure S have all the fields from A
% and B. Conflicts are resolved by using the value in A.
%
%
% merge_structs.m
% David Gleich
%
% Revision 1.00
% 19 Octoboer 2005
%
S = A;
fn = fieldnames(B);
for ii = 1:length(fn)
if (~isfield(A, fn{ii}))
S.(fn{ii}) = B.(fn{ii});
end;
end;
function P = normout(A)
% NORMOUT Normalize the outdegrees of the matrix A.
%
% P = normout(A)
%
% P has the same non-zero structure as A, but is normalized such that the
% sum of each row is 1, assuming that A has non-negative entries.
%
%
% normout.m
% David Gleich
%
% Revision 1.00
% 19 Octoboer 2005
%
% compute the row-sums/degrees
d = full(sum(A,2));
% invert the non-zeros in the data
id = invzero(d);
% scale the rows of the matrix
P = diag(sparse(id))*A;
function v = invzero(v)
% INVZERO Compute the inverse elements of a vector with zero entries.
%
% iv = invzero(v)
%
% iv is 1./v except where v = 0, in which case it is 0.
%
%
% invzero.m
% David Gleich
%
% Revision 1.00
% 19 Octoboer 2005
%
% sparse input are easy to handle
if (issparse(v))
[m n] = size(v);
[i j val] = find(v);
val = 1./val;
v = sparse(i,j,val,m,n);
return;
end;
% so are dense input
% compute the 0 mask
zm = abs(v) > eps(1);
% invert all non-zeros
v(zm) = 1./v(zm);
function dmask = dangling(A)
% DANGLING Compute the indicator vector for dangling links for webgraph A
%
% d = dangling(A)
%
d = full(sum(A,2));
dmask = d == 0;
function [k,sizes]=components(A)
% based on components.m from (MESHPART Toolkit)
% which had
% John Gilbert, Xerox PARC, 8 June 1992.
% Copyright (c) 1990-1996 by Xerox Corporation. All rights reserved.
% HELP COPYRIGHT for complete copyright and licensing notice
[p,p,r,r] = dmperm(A|speye(size(A)));
sizes = diff(r);
k = length(sizes);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -