📄 melgmm.html
字号:
<html><head> <meta HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=ISO-8859-1"> <title>Contents.m</title><link rel="stylesheet" type="text/css" href="../../stpr.css"></head><body><table border=0 width="100%" cellpadding=0 cellspacing=0><tr valign="baseline"><td valign="baseline" class="function"><b class="function">MELGMM</b><td valign="baseline" align="right" class="function"><a href="../../probab/estimation/index.html" target="mdsdir"><img border = 0 src="../../up.gif"></a></table> <p><b>Maximizes Expectation of Log-Likelihood for Gaussian mixture.</b></p> <hr><div class='code'><code><span class=help> </span><br><span class=help> <span class=help_field>Synopsis:</span></span><br><span class=help> model = melgmm(X,Alpha)</span><br><span class=help> model = melgmm(X,Alpha,cov_type)</span><br><span class=help> </span><br><span class=help> <span class=help_field>Description:</span></span><br><span class=help> model = melgmm(X,Alpha) maximizes expectation of log-likelihood </span><br><span class=help> function for Gaussian mixture model</span><br><span class=help> </span><br><span class=help> (Mean,Cov,Prior) = argmax F(Mean,Cov,Prior)</span><br><span class=help> Mean,Cov,Prior </span><br><span class=help></span><br><span class=help> where</span><br><span class=help> F = sum sum Alpha(j,i)*log(pdfgauss(X(:,i),Mean(:,y),Cov(:,:,y)))</span><br><span class=help> y i </span><br><span class=help></span><br><span class=help> The solution is returned in the structure model with fields</span><br><span class=help> Mean [dim x ncomp], Cov [dim x dim x ncomp] and Prior [1 x ncomp].</span><br><span class=help></span><br><span class=help> model = melgmm(X,Alpha,cov_type) specifies covariance matrix:</span><br><span class=help> cov_type = 'full' full covariance matrix (default)</span><br><span class=help> cov_type = 'diag' diagonal covarinace matrix</span><br><span class=help> cov_type = 'spherical' spherical covariance matrix</span><br><span class=help></span><br><span class=help> <span class=help_field>Input:</span></span><br><span class=help> X [dim x num_data] Data sample.</span><br><span class=help> Alpha [ncomp x num_data] Distribution of hidden state given sample.</span><br><span class=help> cov_type [string] Type of covariacne matrix (see above).</span><br><span class=help></span><br><span class=help> <span class=help_field>Output:</span></span><br><span class=help> model [struct] Gaussian mixture model:</span><br><span class=help> .Mean [dim x ncomp] Mean vectors.</span><br><span class=help> .Cov [dim x dim x ncomp] Covariance matrices.</span><br><span class=help> .Prior [1 x ncomp] Distribution of hidden state.</span><br><span class=help></span><br><span class=help> <span class=also_field>See also </span><span class=also></span><br><span class=help><span class=also> <a href = "../../probab/estimation/emgmm.html" target="mdsbody">EMGMM</a>, <a href = "../../probab/estimation/mlcgmm.html" target="mdsbody">MLCGMM</a>.</span><br><span class=help></span><br></code></div> <hr> <b>Source:</b> <a href= "../../probab/estimation/list/melgmm.html">melgmm.m</a> <p><b class="info_field">About: </b> Statistical Pattern Recognition Toolbox<br> (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac<br> <a href="http://www.cvut.cz">Czech Technical University Prague</a><br> <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a><br> <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a><br> <p><b class="info_field">Modifications: </b> <br> 30-apr-2004, VF<br> 19-sep-2003, VF<br> 27-feb-2003, VF<br></body></html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -