📄 aco.txt
字号:
% the procedure of ant colony algorithm for VRP
%
% % % % % % % % % % %
%initialize the parameters of ant colony algorithms
load data.txt;
d=data(:,2:3);
g=data(:,4);
m=31; % 蚂蚁数
alpha=1;
belta=4;% 决定tao和miu重要性的参数
lmda=0;
rou=0.9; %衰减系数
q0=0.95;
% 概率
tao0=1/(31*841.04);%初始信息素
Q=1;% 蚂蚁循环一周所释放的信息素
defined_phrm=15.0; % initial pheromone level value
QV=100; % 车辆容量
vehicle_best=round(sum(g)/QV)+1; %所完成任务所需的最少车数
V=40;
% 计算两点的距离
for i=1:32;
for j=1:32;
dist(i,j)=sqrt((d(i,1)-d(j,1))^2+(d(i,2)-d(j,2))^2);
end;
end;
%给tao miu赋初值
for i=1:32;
for j=1:32;
if i~=j;
%s(i,j)=dist(i,1)+dist(1,j)-dist(i,j);
tao(i,j)=defined_phrm;
miu(i,j)=1/dist(i,j);
end;
end;
end;
for k=1:32;
for k=1:32;
deltao(i,j)=0;
end;
end;
best_cost=10000;
for n_gen=1:50;
print_head(n_gen);
for i=1:m;
%best_solution=[];
print_head2(i);
sumload=0;
cur_pos(i)=1;
rn=randperm(32);
n=1;
nn=1;
part_sol(nn)=1;
%cost(n_gen,i)=0.0;
n_sol=0; % 由蚂蚁产生的路径数量
M_vehicle=500;
t=0; %最佳路径数组的元素数为0
while sumload<=QV;
for k=1:length(rn);
if sumload+g(rn(k))<=QV;
gama(cur_pos(i),rn(k))=(sumload+g(rn(k)))/QV;
A(n)=rn(k);
n=n+1;
end;
end;
fid=fopen('out_customer.txt','a+');
fprintf(fid,'%s %i\t','the current position is:',cur_pos(i));
fprintf(fid,'\n%s','the possible customer set is:')
fprintf(fid,'\t%i\n',A);
fprintf(fid,'------------------------------\n');
fclose(fid);
p=compute_prob(A,cur_pos(i),tao,miu,alpha,belta,gama,lmda,i);
maxp=1e-8;
na=length(A);
for j=1:na;
if p(j)>maxp
maxp=p(j);
index_max=j;
end;
end;
old_pos=cur_pos(i);
if rand(1)<q0
cur_pos(i)=A(index_max);
else
krnd=randperm(na);
cur_pos(i)=A(krnd(1));
bbb=[old_pos cur_pos(i)];
ccc=[1 1];
if bbb==ccc;
cur_pos(i)=A(krnd(2));
end;
end;
tao(old_pos,cur_pos(i))=taolocalupdate(tao(old_pos,cur_pos(i)),rou,tao0);%对所经弧进行局部更新
sumload=sumload+g(cur_pos(i));
nn=nn+1;
part_sol(nn)=cur_pos(i);
temp_load=sumload;
if cur_pos(i)~=1;
rn=setdiff(rn,cur_pos(i));
n=1;
A=[];
end;
if cur_pos(i)==1; % 如果当前点为车场,将当前路径中的已访问用户去掉后,开始产生新路径
if setdiff(part_sol,1)~=[];
n_sol=n_sol+1; % 表示产生的路径数,n_sol=1,2,3,..5,6...,超过5条对其费用加上车辆的派遣费用
fid=fopen('out_solution.txt','a+');
fprintf(fid,'%s%i%s','NO.',n_sol,'条路径是:');
fprintf(fid,'%i ',part_sol);
fprintf(fid,'\n');
fprintf(fid,'%s','当前的用户需求量是:');
fprintf(fid,'%i\n',temp_load);
fprintf(fid,'------------------------------\n');
fclose(fid);
% 对所得路径进行路径内3-opt优化
final_sol=exchange(part_sol);
for nt=1:length(final_sol); % 将所有产生的路径传给一个数组
temp(t+nt)=final_sol(nt);
end;
t=t+length(final_sol)-1;
sumload=0;
final_sol=setdiff(final_sol,1);
rn=setdiff(rn,final_sol);
part_sol=[];
final_sol=[];
nn=1;
part_sol(nn)=cur_pos(i);
A=[];
n=1;
end;
end;
if setdiff(rn,1)==[];% 产生最后一条终点不为1的路径
n_sol=n_sol+1;
nl=length(part_sol);
part_sol(nl+1)=1;%将路径的最后1位补1
% 对所得路径进行路径内3-opt优化
final_sol=exchange(part_sol);
for nt=1:length(final_sol); % 将所有产生的路径传给一个数组
temp(t+nt)=final_sol(nt);
end;
cost(n_gen,i)=cost_sol(temp,dist)+M_vehicle*(n_sol-vehicle_best); %计算由蚂蚁i产生的路径总长度
for ki=1:length(temp)-1;
deltao(temp(ki),temp(ki+1))=deltao(temp(ki),temp(ki+1))+Q/cost(n_gen,i);
end;
if cost(n_gen,i)<best_cost;
best_cost=cost(n_gen,i);
old_cost=best_cost;
best_gen=n_gen; % 产生最小费用的代数
best_ant=i; %产生最小费用的蚂蚁
best_solution=temp;
end;
if i==m; %如果所有蚂蚁均完成一次循环,,则用最佳费用所对应的路径对弧进行整体更新
for ii=1:32;
for jj=1:32;
tao(ii,jj)=(1-rou)*tao(ii,jj);
end;
end;
for kk=1:length(best_solution)-1;
tao(best_solution(kk),best_solution(kk+1))=tao(best_solution(kk),best_solution(kk+1))+deltao(best_solution(kk),best_solution(kk+1));
end;
end;
fid=fopen('out_solution.txt','a+');
fprintf(fid,'%s%i%s','NO.',n_sol,'路径是:');
fprintf(fid,'%i ',part_sol);
fprintf(fid,'\n');
fprintf(fid,'%s %i\n','当前的用户需求量是:',temp_load);
fprintf(fid,'%s %f\n','总费用是:',cost(n_gen,i));
fprintf(fid,'------------------------------\n');
fprintf(fid,'%s\n','最终路径是:');
fprintf(fid,'%i-',temp);
fprintf(fid,'\n');
fclose(fid);
temp=[];
break;
end;
end;
end;
end;
第二个:
function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)
%%-------------------------------------------------------------------------
%% 主要符号说明
%% C n个城市的坐标,n×2的矩阵
%% NC_max 最大迭代次数
%% m 蚂蚁个数
%% Alpha 表征信息素重要程度的参数
%% Beta 表征启发式因子重要程度的参数
%% Rho 信息素蒸发系数
%% Q 信息素增加强度系数
%% R_best 各代最佳路线
%% L_best 各代最佳路线的长度
%%=========================================================================
%%第一步:变量初始化
n=size(C,1);%n表示问题的规模(城市个数)
D=zeros(n,n);%D表示完全图的赋权邻接矩阵
for i=1:n
for j=1:n
if i~=j
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
else
D(i,j)=eps; %i=j时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示
end
D(j,i)=D(i,j); %对称矩阵
end
end
Eta=1./D; %Eta为启发因子,这里设为距离的倒数
Tau=ones(n,n); %Tau为信息素矩阵
Tabu=zeros(m,n); %存储并记录路径的生成
NC=1; %迭代计数器,记录迭代次数
R_best=zeros(NC_max,n); %各代最佳路线
L_best=inf.*ones(NC_max,1); %各代最佳路线的长度
L_ave=zeros(NC_max,1); %各代路线的平均长度
while NC<=NC_max %停止条件之一:达到最大迭代次数,停止
%%第二步:将m只蚂蚁放到n个城市上
Randpos=[]; %随即存取
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))'; %此句不太理解?
%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游
for j=2:n %所在城市不计算
for i=1:m
visited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问
J=zeros(1,(n-j+1)); %待访问的城市
P=J; %待访问城市的选择概率分布
Jc=1;
for k=1:n
if length(find(visited==k))==0 %开始时置0
J(Jc)=k;
Jc=Jc+1; %访问的城市个数自加1
end
end
%下面计算待选城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
%按概率原则选取下一个城市
Pcum=cumsum(P); %cumsum,元素累加即求和
Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end
%%第四步:记录本次迭代最佳路线
L=zeros(m,1); %开始距离为0,m*1的列向量
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1)); %原距离加上第j个城市到第j+1个城市的距离
end
L(i)=L(i)+D(R(1),R(n)); %一轮下来后走过的距离
end
L_best(NC)=min(L); %最佳距离取最小
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线
L_ave(NC)=mean(L); %此轮迭代后的平均距离
NC=NC+1 %迭代继续
%%第五步:更新信息素
Delta_Tau=zeros(n,n); %开始时信息素为n*n的0矩阵
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
%此次循环在路径(i,j)上的信息素增量
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
%此次循环在整个路径上的信息素增量
end
Tau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素
%%第六步:禁忌表清零
Tabu=zeros(m,n); %%直到最大迭代次数
end
%%第七步:输出结果
Pos=find(L_best==min(L_best)); %找到最佳路径(非0为真)
Shortest_Route=R_best(Pos(1),:) %最大迭代次数后最佳路径
Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离
subplot(1,2,1) %绘制第一个子图形
DrawRoute(C,Shortest_Route) %画路线图的子函数
subplot(1,2,2) %绘制第二个子图形
plot(L_best)
hold on %保持图形
plot(L_ave,'r')
title('平均距离和最短距离') %标题
function DrawRoute(C,R)
%%=========================================================================
%% DrawRoute.m
%% 画路线图的子函数
%%-------------------------------------------------------------------------
%% C Coordinate 节点坐标,由一个N×2的矩阵存储
%% R Route 路线
%%=========================================================================
N=length(R);
scatter(C(:,1),C(:,2));
hold on
plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)],'g')
hold on
for ii=2:N
plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)],'g')
hold on
end
title('旅行商问题优化结果 ')
这是一个例子:
1.function Q = FINDabc(A) %给定B1,B2两点坐标计算平面参数a,b,c
v = 1e-3*[1 1 1 1];r=1.3;l=0;
K=6;
a = RAND;
a = RESHAP_MAX(A,a,K);
while(sum(STAND(A,a(K,:))>v)~=0)
l=0;
[Q,w]=REF(a,r,K);
while((~D_ZONE1(Q))|(COMP(A,Q)>=COMP(A,a(K,:))))
[Q,w]=REF(a,w,K);
if (w<=eps^12)
a(K,:)=[];
K=K-1;
l = 1;
end
if(l==1)
break;
end
end
if(~l)
a(K,:)=Q;
end
if(K<=1)
a=FINDabc(A);
break;
end
a = RESHAP_MAX(A,a,K);
end
if(K<=1)
Q = a(1,:);
else Q=sum(a)./K;
end
11
2.function P=TEXT(i) %对i组[a,b,c]检验,返回[a,b,c,a',b',c']
j = 1;
while(j<=i)
A(1,1:2)= CREAT_RAND12;
A(1,3)=CREAT_RAND3;
if(D_ZONE(A(1,:))==1)
b(j,:)=A(1,:);j=j+1;
end
end
for j=1:i
c(j,:)=Fx(b(j,:));
d(j,:)=FINDabc(c(j,:));
e(j,:)=(d(j,:)-b(j,:))./b(j,:);
end
P=[b,d,e];
plot(e(:,1),'b--o');hold on;
plot(e(:,2),'g-.x');
plot(e(:,3),'r:+');
3.function p = recognize(i) %分辨率的影响
j = 1;
while(j<=i)
a(1,1:2) = CREAT_RAND12 ();
a(1,3) = CREAT_RAND3();
if(D_ZONE(a(1,:)))
b(j,:) = a(1,:);
j = j+1;
end
end
for j = 1:i
c(j,:) = Fx(b(j,:));
e(j,:)=1e-4*round(1e4*c(j,:));
end
for j = 1:i
f(j,1:3) = FINDabc(e(j,:));
end
hl = (b-f)./b;
for j = 1:3
h(:,j)=sum(abs(hl(:,j)))/i*ones(i,1);
end
plot(h(:,1),'--r');hold on;plot(h(:,2),'-y');plot(h(:,3),':k');
p = h;
12
4.function Q_C12 =CREAT_RAND12 ()
if(y_C12<=0.5)
Q_C12(1) =0.0017 *rand(1);
else
Q_C12(1) = -0.0017*rand(1);
end
y_C12 = rand(1);
if(y_C12<=0.5)
Q_C12(2) = 0.0017*rand(1);
else
Q_C12(2) = -0.0017*rand(1);
End
5.function Q_C = CREAT_RAND3()
y_C = rand(1);
if(y_C<=0.5)
Q_C = 3*1e-6*rand(1);
else
Q_C = -3*1e-6*rand(1);
end
6.function y = D_ZONE(Q_D)
p = pi/180/10;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -