⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 femmatrixnode.m

📁 实现对电磁层析模型的建立
💻 M
字号:
function [Agrad,Kb,M,S,C]=FemMatrixNode(Node,Element,z);%FemMatrixNode Computes the blocks of the system matrix for 2D EIT with linear and quadratic basis. Conductivity in linear basis.% Function [Agrad,Kb,M,S,C]=FemMatrixNode(Node,Element,z);% computes the matrices needed in the finite element% approximation of the 2D EIT forward problem. Conductivity in linear basis.%% INPUT%% Node = nodal data structure% Element = element data structure% z = a vector of (complex) contact impedances%% OUTPUT%% Agrad = the gradient part of the system matrix% Kb,M and S = other blocks of the system matrix% C = voltage reference matrix% M. Vauhkonen 11.5.1994, modified from the version of J. Kaipio% 25.4.1994. Modified 5.9.1994 by M. Vauhkonen for EIT.% Modified for EIDORS by M. Vauhkonen 11.5.2000% University of Kuopio, Department of Applied Physics, PO Box 1627,% FIN-70211 Kuopio, Finland, email: Marko.Vauhkonen@uku.fiNel=max(size(z));                           %The number of electrodes.NNode=max(size(Node));                      %The number of nodesNElement=max(size(Element));                %The number of elementsM=sparse(NNode,Nel);Kb=sparse(NNode,NNode);s=zeros(Nel,1);mE=max(size(Element(1).Topology));if mE==3 Agrad=sparse(NNode^2,NNode); H=reshape([Element.Topology],3,NElement)'; mH=max(max(H));else H=reshape([Element.Topology],6,NElement)'; mH=max(max(H(:,1:2:6))); Agrad=sparse(NNode^2,mH); clear Hendg=reshape([Node.Coordinate],2,NNode)';      %Nodesfor jj=1:mHAa=sparse(NNode,NNode);El=Node(jj).ElementConnection; for ii=1:max(size(El))   ind=Element(El(ii)).Topology; % Indices of the element   gg=g(ind,:);   if max(size(gg))==3    indsig=ind;    I=find(jj==indsig);    anis=grinprodgausnode(gg,I);    Aa(ind,ind)=Aa(ind,ind)+anis;   else    indsig=ind(1:2:6);    I=find(jj==indsig);    anis=grinprodgausnodequad(gg,I);    Aa(ind,ind)=Aa(ind,ind)+anis;   end end Agrad(:,jj)=Aa(:);endfor ii=1:NElement  ind=(Element(ii).Topology);               % The indices to g of the ii'th triangle.  gg=g(ind,:);                              % A 3x2 or 6x2 matrix of triangle nodes in (x,y) coord.   if any([Element(ii).Face{:,3}]),           %Checks if the triangle ii is the triangle that is                                            % under the electrode.    [In,Jn,InE]=find([Element(ii).Face{:,3}]);    bind=Element(ii).Face{Jn,1};            % Nodes on the boundary    ab=g(bind(:),:);    if max(size(bind))==2                   % First order basis     bb1=bound1([ab]);Bb1=zeros(max(size(ind)),1);     bb2=bound2([ab]);Bb2=zeros(max(size(ind)));     s(InE)=s(InE)+1/z(InE)*2*bb1; % 2*bb1 = length of the electrode.     eind=[find(bind(1)==ind),find(bind(2)==ind)];    else                                    % Second order basis      bb1=boundquad1([ab]);Bb1=zeros(max(size(ind)),1);      bb2=boundquad2([ab]);Bb2=zeros(max(size(ind)));      s(InE)=s(InE)+1/z(InE)*electrlen([ab]);      eind=[find(bind(1)==ind),find(bind(2)==ind),find(bind(3)==ind)];    end    Bb1(eind)=bb1;    M(ind,InE)=M(ind,InE)-1/z(InE)*Bb1;    Bb2(eind,eind)=bb2;    Kb(ind,ind)=Kb(ind,ind)+1/z(InE)*Bb2;  else                                      %The triangle isn't under the electrode.  endend  S=sparse(diag(s));[II1,C]=Current(Nel,NNode,'adj');C=C(:,1:Nel-1);                             % For the voltage referenceC=sparse(C(:,1:Nel-1));                             S=C'*S*C;M=M*C;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -