⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 readme

📁 基于MATLAB完成的神经网络源程序,可以利用该程序完成有关神经网络的应用。
💻
字号:
--------------------Notes on routines--------------------These M-files are User Contributed Routines which are being redistributedby The MathWorks, upon request, on an "as is" basis.  A User ContributedRoutine is not a product of The MathWorks, Inc. and The MathWorks assumesno responsibility for any errors that may exist in these routines.These files were created under Matlab 5.1 and use no specific toolboxes.Examples of running the routines are given below.Some of the routines have been incorporated into "demo" programs. Thedemo programs are simple scripts that call the associated M-files.All routines written by Hugh Pasika except for the SVM which was originallycomposed by Antonio Artes (that's why the variables are all in Spanish) andsmoothed a bit by Hugh Pasika and the ICA mfile which was written by HimeshMadhuranath.pasika@soma.mcmaster.ca--------------------------------------------   Back Propagation   (section 4.8)--------------------------------------------% 1. make the data   P=mk_data(500);% 2. start the backprop algorithm   [W1, b1, W2, b2, ep_err, a, end_ep]=bpm_train(P, 4, 2, 2, .1, .5, 500, 0,0,0,0,0);% 3. check the decision boundary   bpm_dec_bnds(W1, b1, W2, b2, .1);% 4. make a test set   T=mk_data(10000);% 5. check the accuracy   [cor, uncor]=bpm_test(W1,b1,W2,b2,T);% 6. plot Bayesian decision boundary   c=pl_circ([-2/3 0], 2.34, .01, 1);--------------------------------------------   Radial Basis Functions   (section 5.14)--------------------------------------------% 1. Make data set   P = mk_data(200);% 2. Train the RBF   w = rbf(P(1:100,1:2), P(:,1:2), P(1:100,3:4), 4, 1);% 3. make a test set   T = mk_data(500);% 4. get network outputs with test set   rbfout = rbf_test(w,T(:,1:2),P(:,1:2),4);% 5. determine percent correct   rbf_correct(rbfout, T(:,5));% 6. plot decision boundary   rbf_db(w,P(:,1:2),4,.2)--------------------------------------------   Support Vector Machine   (section 6.4)--------------------------------------------% 1. make data set   P = mk_data(200);% 2. run the SVM routine   [pesos,vect,b] = svm_rbf(P, 8, 1000, .01, .1);% 3. make a test set   T = mk_data(200);% 4. test data   [c u] = svm_test(T, pesos, vect, b, 8);% 5. plot decision surface   svm_dec_bnd(pesos, vect, b, 8)-------------------------------------------------   Self Organizing Map (2d data, 2d map)   (section 9.6)-------------------------------------------------% 1. run the demo   som_2d_demo% plotting between iterations has been taken out but can easily be added% by uncommenting line 95 in som_2d.m "som_pl_map(W,1,2); drawnow"-------------------------------------------------   Self Organizing Map (2d data, 1d map)   (section 9.6)-------------------------------------------------% 1. make the data   P=rand(1000,2);% 2. ordering phase   [W1s p1]=som_1d(P,200,10, [.1 18]);% 3. convergence phase   [W2s p2]=som_1d(P,200,50, [p1(1) .001 p1(2) 0],W1s);--------------------------------------------   Generalized Hebbian Algorithm   (section 8.6)--------------------------------------------% 1. load the image data   load gha_data% 2. set the colormap   colormap(gray(256))% 3. run the algorithm   W=gha_getweights(parn,2000,8,.0001);% 4. determine mask coefficients%    display masks and reconstructed image with unquantized coeffs   c=gha_getcoeffs(parn,W,1);% 5. quantize the coeffecients according user specified bit rate%    and recompose the image   [I, st, xla] = gha_quantcoeffs(c,W,parn,[7 7 6 4 3 3 2 2]);% 6. display the reconstructed image   subplot(2,2,4)    pim(I)--------------------------------------------   Independent Component Analysis   (section 10.12)--------------------------------------------This example runs as a stand alone script.% 1. ica--------------------------------------------   Brain State in a Box   (section 14.11)--------------------------------------------% 1. run the routine   c=bsb([-.3 -.7], .9);% 2. subsequent plots will be held   c=bsb([-.1 -.7], .9);--------------------------------------------   Hopfield Network   (section 14.8)--------------------------------------------% 1. run the demo   hop_demo

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -