📄 cooperativeoptimisationalgorithm.java
字号:
/* * CoOperativeOptimisationAglorithm.java * * Created on January 24, 2003, 11:44 AM * * * Copyright (C) 2003 - Edwin S. Peer * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * * This class implements a generalised co-operative optimisation algorithm. The * original co-operative PSO is due to F. van den Bergh, reference: * F. van den Bergh, "An Analysis of Particle Swarm Optimizers," * PhD thesis, Department of Computer Science, * University of Pretoria, South Africa, 2002. * */package net.sourceforge.cilib.Algorithm;import java.lang.*;import net.sourceforge.cilib.*;import net.sourceforge.cilib.Problem.*;/** * * @author espeer */public class CoOperativeOptimisationAlgorithm extends Algorithm implements OptimisationAlgorithm, ParticipatingAlgorithm { /** Creates a new instance of CoOperativeOptimisationAglorithm */ public CoOperativeOptimisationAlgorithm() { participants = 0; fitness = - Double.MAX_VALUE; } public void setAlgorithmFactory(AlgorithmFactory factory) { this.factory = factory; } public void initialise() { super.initialise(); if (participants == 0) { participants = problem.getDimension(); } optimisers = new Algorithm[participants]; int dim = problem.getDimension() / participants; int extras = problem.getDimension() % participants; int offset = 0; for (int i = 0; i < participants; ++i) { optimisers[i] = factory.newAlgorithm(); CoOperativeOptimisationProblemAdapter subProblem; if (extras > 0) { --extras; subProblem = new CoOperativeOptimisationProblemAdapter(problem, dim + 1, offset); offset += (dim + 1); } else { subProblem = new CoOperativeOptimisationProblemAdapter(problem, dim, offset); offset += dim; } try { ((OptimisationAlgorithm) optimisers[i]).setOptimisationProblem(subProblem); } catch (ClassCastException e) { throw new InitialisationException("Algorithm is not an OptimisationAlgorithm"); } optimisers[i].initialise(); ParticipatingAlgorithm participant; try { participant = (ParticipatingAlgorithm) optimisers[i]; } catch (ClassCastException e) { throw new InitialisationException("Algorithm is not a ParticipatingAlgorithm"); } for (int j = 0; j < subProblem.getDimension(); ++j) { context[subProblem.getOffset() + j] = participant.getContribution()[j]; } } } public void performIteration() { ParticipatingAlgorithm participant = null; for (int i = 0; i < participants; ++i) { participant = (ParticipatingAlgorithm) optimisers[i]; CoOperativeOptimisationProblemAdapter adapter = (CoOperativeOptimisationProblemAdapter) ((OptimisationAlgorithm) optimisers[i]).getOptimisationProblem(); adapter.updateContext(context); optimisers[i].performIteration(); for (int j = 0; j < adapter.getDimension(); ++j) { context[adapter.getOffset() + j] = participant.getContribution()[j]; } } fitness = participant.getContributionFitness(); for (int i = 0; i < participants - 1; ++i) { ((ParticipatingAlgorithm) optimisers[i]).updateContributionFitness(fitness); } } public OptimisationProblem getOptimisationProblem() { return problem; } public double[] getSolution() { return context; } public void setOptimisationProblem(OptimisationProblem problem) { this.problem = problem; context = new double[problem.getDimension()]; } public void setParticipants(int participants) { this.participants = participants; } public double[] getContribution() { return context; } public double getContributionFitness() { return fitness; } public void updateContributionFitness(double fitness) { this.fitness = fitness; for (int i = 0; i < participants; ++i) { ParticipatingAlgorithm participant = (ParticipatingAlgorithm) optimisers[i]; participant.updateContributionFitness(fitness); } } public int getFitnessEvaluations() { int fitnessEvaluations = 0; for (int i = 0; i < participants; ++i) { fitnessEvaluations += ((OptimisationAlgorithm) optimisers[i]).getFitnessEvaluations(); } return fitnessEvaluations; } public double getSolutionFitness() { return fitness; } private int participants; private AlgorithmFactory factory; private OptimisationProblem problem; private double[] context; private double fitness; private Algorithm[] optimisers; private class CoOperativeOptimisationProblemAdapter implements OptimisationProblem { public CoOperativeOptimisationProblemAdapter(OptimisationProblem problem, int dimension, int offset) { this.problem = problem; this.dimension = dimension; this.offset = offset; context = new double[problem.getDimension()]; } public int getDimension() { return dimension; } public int getOffset() { return offset; } public void updateContext(double[] context) { for (int i = 0; i < problem.getDimension(); ++i) { this.context[i] = context[i]; } } public Domain getDomain(int component) { return problem.getDomain(offset + component); } public double getFitness(double[] solution) { for (int i = 0; i < dimension; ++i) { context[offset + i] = solution[i]; } return problem.getFitness(context); } private OptimisationProblem problem; private int offset; private int dimension; private double[] context; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -