⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 onerattributeeval.java

📁 6个特征提取的机器学习方法
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    OneRAttributeEval.java *    Copyright (C) 1999 Mark Hall * */package weka.attributeSelection;import weka.classifiers.Classifier;import weka.classifiers.Evaluation;import weka.core.Capabilities;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.Utils;import weka.core.Capabilities.Capability;import weka.filters.Filter;import weka.filters.unsupervised.attribute.Remove;import java.util.Enumeration;import java.util.Random;import java.util.Vector;/**  <!-- globalinfo-start --> * OneRAttributeEval :<br/> * <br/> * Evaluates the worth of an attribute by using the OneR classifier.<br/> * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -S &lt;seed&gt; *  Random number seed for cross validation (default = 1)</pre> *  * <pre> -F &lt;folds&gt; *  Number of folds for cross validation (default = 10)</pre> *  * <pre> -D *  Use training data for evaluation rather than cross validaton</pre> *  * <pre> -B &lt;minimum bucket size&gt; *  Minimum number of objects in a bucket (passed on to OneR, default = 6)</pre> *  <!-- options-end --> * * @author Mark Hall (mhall@cs.waikato.ac.nz) * @version $Revision: 1.17 $ */public class OneRAttributeEval  extends AttributeEvaluator   implements OptionHandler {    /** for serialization */  static final long serialVersionUID = 4386514823886856980L;  /** The training instances */  private Instances m_trainInstances;  /** The class index */  private int m_classIndex;  /** The number of attributes */  private int m_numAttribs;  /** The number of instances */  private int m_numInstances;  /** Random number seed */  private int m_randomSeed;  /** Number of folds for cross validation */  private int m_folds;  /** Use training data to evaluate merit rather than x-val */  private boolean m_evalUsingTrainingData;  /** Passed on to OneR */  private int m_minBucketSize;  /**   * Returns a string describing this attribute evaluator   * @return a description of the evaluator suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "OneRAttributeEval :\n\nEvaluates the worth of an attribute by "      +"using the OneR classifier.\n";  }  /**   * Returns a string for this option suitable for display in the gui   * as a tip text   *   * @return a string describing this option   */  public String seedTipText() {    return "Set the seed for use in cross validation.";  }  /**   * Set the random number seed for cross validation   *   * @param seed the seed to use   */  public void setSeed(int seed) {    m_randomSeed = seed;  }  /**   * Get the random number seed   *   * @return an <code>int</code> value   */  public int getSeed() {    return m_randomSeed;  }  /**   * Returns a string for this option suitable for display in the gui   * as a tip text   *   * @return a string describing this option   */  public String foldsTipText() {    return "Set the number of folds for cross validation.";  }  /**   * Set the number of folds to use for cross validation   *   * @param folds the number of folds   */  public void setFolds(int folds) {    m_folds = folds;    if (m_folds < 2) {      m_folds = 2;    }  }     /**   * Get the number of folds used for cross validation   *   * @return the number of folds   */  public int getFolds() {    return m_folds;  }  /**   * Returns a string for this option suitable for display in the gui   * as a tip text   *   * @return a string describing this option   */  public String evalUsingTrainingDataTipText() {    return "Use the training data to evaluate attributes rather than "      + "cross validation.";  }  /**   * Use the training data to evaluate attributes rather than cross validation   *   * @param e true if training data is to be used for evaluation   */  public void setEvalUsingTrainingData(boolean e) {    m_evalUsingTrainingData = e;  }  /**   * Returns a string for this option suitable for display in the gui   * as a tip text   *   * @return a string describing this option   */  public String minimumBucketSizeTipText() {    return "The minimum number of objects in a bucket "      + "(passed to OneR).";  }  /**   * Set the minumum bucket size used by OneR   *   * @param minB the minimum bucket size to use   */  public void setMinimumBucketSize(int minB) {    m_minBucketSize = minB;  }  /**   * Get the minimum bucket size used by oneR   *   * @return the minimum bucket size used   */  public int getMinimumBucketSize() {    return m_minBucketSize;  }  /**   * Returns true if the training data is to be used for evaluation   *   * @return true if training data is to be used for evaluation   */  public boolean getEvalUsingTrainingData() {    return m_evalUsingTrainingData;  }  /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector newVector = new Vector(4);    newVector.addElement(new Option(			 "\tRandom number seed for cross validation (default = 1)",			 "S", 1, "-S <seed>"));    newVector.addElement(new Option(			 "\tNumber of folds for cross validation (default = 10)",			 "F", 1, "-F <folds>"));    newVector.addElement(new Option(		   "\tUse training data for evaluation rather than cross validaton",		   "D", 0, "-D"));    newVector.addElement(new Option(			 "\tMinimum number of objects in a bucket (passed on to "			 +"OneR, default = 6)",			 "B", 1, "-B <minimum bucket size>"));    return newVector.elements();  }  /**   * Parses a given list of options. <p/>   *   <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -S &lt;seed&gt;   *  Random number seed for cross validation (default = 1)</pre>   *    * <pre> -F &lt;folds&gt;   *  Number of folds for cross validation (default = 10)</pre>   *    * <pre> -D   *  Use training data for evaluation rather than cross validaton</pre>   *    * <pre> -B &lt;minimum bucket size&gt;   *  Minimum number of objects in a bucket (passed on to OneR, default = 6)</pre>   *    <!-- options-end -->   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String [] options) throws Exception {    String temp = Utils.getOption('S', options);    if (temp.length() != 0) {      setSeed(Integer.parseInt(temp));    }        temp = Utils.getOption('F', options);    if (temp.length() != 0) {      setFolds(Integer.parseInt(temp));    }    temp = Utils.getOption('B', options);    if (temp.length() != 0) {      setMinimumBucketSize(Integer.parseInt(temp));    }        setEvalUsingTrainingData(Utils.getFlag('D', options));    Utils.checkForRemainingOptions(options);  }  /**   * returns the current setup.   *    * @return the options of the current setup   */  public String[] getOptions() {    String [] options = new String [7];    int current = 0;        if (getEvalUsingTrainingData()) {      options[current++] = "-D";    }        options[current++] = "-S";    options[current++] = "" + getSeed();    options[current++] = "-F";    options[current++] = "" + getFolds();    options[current++] = "-B";    options[current++] = "" + getMinimumBucketSize();    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Constructor   */  public OneRAttributeEval () {    resetOptions();  }  /**   * Returns the capabilities of this evaluator.   *   * @return            the capabilities of this evaluator   * @see               Capabilities   */  public Capabilities getCapabilities() {    Capabilities result = super.getCapabilities();        // attributes    result.enable(Capability.NOMINAL_ATTRIBUTES);    result.enable(Capability.NUMERIC_ATTRIBUTES);    result.enable(Capability.DATE_ATTRIBUTES);    result.enable(Capability.MISSING_VALUES);        // class    result.enable(Capability.NOMINAL_CLASS);    result.enable(Capability.MISSING_CLASS_VALUES);        return result;  }  /**   * Initializes a OneRAttribute attribute evaluator.   * Discretizes all attributes that are numeric.   *   * @param data set of instances serving as training data    * @throws Exception if the evaluator has not been    * generated successfully   */  public void buildEvaluator (Instances data)    throws Exception {        // can evaluator handle data?    getCapabilities().testWithFail(data);    m_trainInstances = data;    m_classIndex = m_trainInstances.classIndex();    m_numAttribs = m_trainInstances.numAttributes();    m_numInstances = m_trainInstances.numInstances();  }  /**   * rests to defaults.   */  protected void resetOptions () {    m_trainInstances = null;    m_randomSeed = 1;    m_folds = 10;    m_evalUsingTrainingData = false;    m_minBucketSize = 6; // default used by OneR  }  /**   * evaluates an individual attribute by measuring the amount   * of information gained about the class given the attribute.   *   * @param attribute the index of the attribute to be evaluated   * @throws Exception if the attribute could not be evaluated   */  public double evaluateAttribute (int attribute)    throws Exception {    int[] featArray = new int[2]; // feat + class    double errorRate;    Evaluation o_Evaluation;    Remove delTransform = new Remove();    delTransform.setInvertSelection(true);    // copy the instances    Instances trainCopy = new Instances(m_trainInstances);    featArray[0] = attribute;    featArray[1] = trainCopy.classIndex();    delTransform.setAttributeIndicesArray(featArray);    delTransform.setInputFormat(trainCopy);    trainCopy = Filter.useFilter(trainCopy, delTransform);    o_Evaluation = new Evaluation(trainCopy);    String [] oneROpts = { "-B", ""+getMinimumBucketSize()};    Classifier oneR = Classifier.forName("weka.classifiers.rules.OneR", oneROpts);    if (m_evalUsingTrainingData) {      oneR.buildClassifier(trainCopy);      o_Evaluation.evaluateModel(oneR, trainCopy);    } else {      /*      o_Evaluation.crossValidateModel("weka.classifiers.rules.OneR", 	      trainCopy, 10, 	      null, new Random(m_randomSeed)); */      o_Evaluation.crossValidateModel(oneR, trainCopy, m_folds, new Random(m_randomSeed));    }    errorRate = o_Evaluation.errorRate();    return  (1 - errorRate)*100.0;  }  /**   * Return a description of the evaluator   * @return description as a string   */  public String toString () {    StringBuffer text = new StringBuffer();    if (m_trainInstances == null) {      text.append("\tOneR feature evaluator has not been built yet");    }    else {      text.append("\tOneR feature evaluator.\n\n");      text.append("\tUsing ");      if (m_evalUsingTrainingData) {	text.append("training data for evaluation of attributes.");      } else {	text.append(""+getFolds()+" fold cross validation for evaluating "		    +"attributes.");      }      text.append("\n\tMinimum bucket size for OneR: "		  +getMinimumBucketSize());    }    text.append("\n");    return  text.toString();  }  // ============  // Test method.  // ============  /**   * Main method for testing this class.   *   * @param args the options   */  public static void main (String[] args) {    runEvaluator(new OneRAttributeEval(), args);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -