📄 perceptron_fm.m
字号:
function [D, a] = Perceptron_FM(train_features, train_targets, params, region)
% Classify using the Perceptron algorithm but at each iteration updating the worst-classified sample
% Inputs:
% features - Train features
% targets - Train targets
% params - [Maximum number of iterations, slack]
% region - Decision region vector: [-x x -y y number_of_points]
%
% Outputs
% D - Decision sufrace
[max_iter, slack] = process_params(params);
rate = 0.1;
[c, r] = size(train_features);
xi = ones(1,r)/r*slack;
train_features = [train_features ; ones(1,r)];
train_zero = find(train_targets == 0);
%Preprocessing
y = train_features;
y(:,train_zero)= -y(:,train_zero);
%Initial weights
a = sum(y')';
n = length(train_targets);
iter = 0;
while ((sum(sign(a'*train_features.*(2*train_targets-1))<0)>0) & (iter < max_iter))
iter = iter + 1;
%Find worst-classified sample
A = a'*train_features.*(2*train_targets-1)+xi;
[m, indice] = min(A);
if (a' * y(:,indice) <= 0)
a = a + y(:,indice);
end
%Calculate the new slack vector
xi(indice) = xi(indice) + rate;
xi = xi / sum(xi) * slack;
end
if (iter == max_iter),
disp(['Maximum iteration (' num2str(max_iter) ') reached']);
end
%Find decision region
N = region(5);
x = ones(N,1) * linspace (region(1),region(2),N);
y = linspace (region(3),region(4),N)' * ones(1,N);
D = (a(1).*x + a(2).*y + a(c+1)> 0);
a = a';
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -