📄 minimum_cost.m
字号:
function D = Minimum_Cost(train_features, train_targets, lambda, region)
% Classify using the minimum error criterion via histogram estimation of the densities
% Inputs:
% features- Train features
% targets - Train targets
% lambda - Cost matrix
% region - Decision region vector: [-x x -y y number_of_points]
%
% Outputs
% D - Decision sufrace
train_one = find(train_targets == 1);
train_zero = find(train_targets == 0);
P0 = length(train_zero)/length(train_targets);
P1 = length(train_one)/length(train_targets);
Nbins = max(3,floor(size(train_features,2).^(1/3)));
p0 = high_histogram(train_features(:,train_zero),Nbins,region(1:end-1));
p1 = high_histogram(train_features(:,train_one),Nbins,region(1:end-1));
decision = (lambda(2,1) - lambda(1,1))*p0*P0 < (lambda(1,2) - lambda(2,2))*p1*P1;
%Make decision region
x = linspace(region(1),region(2),region(5));
xx = linspace(region(1),region(2),Nbins);
y = linspace(region(3),region(4),region(5));
yy = linspace(region(3),region(4),Nbins);
D = interp2(xx, yy', decision, x, y')'>.5;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -