📄 perceptron_bvi.m
字号:
function D = Perceptron_BVI(train_features, train_targets, params, region)
% Classify using the batch variable increment Perceptron algorithm
% Inputs:
% features - Train features
% targets - Train targets
% param - [Num iter, Convergence rate]
% region - Decision region vector: [-x x -y y number_of_points]
%
% Outputs
% D - Decision sufrace
[c, n] = size(train_features);
[theta, eta] = process_params(params);
train_features = [train_features ; ones(1,n)];
train_zero = find(train_targets == 0);
%Preprocessing
y = train_features;
y(:,train_zero) = -y(:,train_zero);
a = sum(y')';
%Initial weights
iter = 0;
Yk = [1];
while (~isempty(Yk) & (iter < theta))
iter = iter + 1;
%If y_j is misclassified then append y_j to Yk
Yk = [];
for k = 1:n,
if (sign(a'*train_features(:,k).*(2*train_targets(:,k)-1)) < 0),
Yk = [Yk k];
end
end
% a <- a + eta*sum(Yk)
a = a + eta * sum(y(:,Yk)')';
end
if (iter == theta),
disp(['Maximum iteration (' num2str(theta) ') reached']);
end
%Find decision region
N = region(5);
x = ones(N,1) * linspace (region(1),region(2),N);
y = linspace (region(3),region(4),N)' * ones(1,N);
D = (a(1).*x + a(2).*y + a(c+1)> 0);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -