📄 backpropagation_batch.m
字号:
function [D, Wh, Wo] = Backpropagation_Batch(train_features, train_targets, params, region)
% Classify using a backpropagation network with a batch learning algorithm
% Inputs:
% features- Train features
% targets - Train targets
% params - Number of hidden units, Convergence criterion, Convergence rate
% region - Decision region vector: [-x x -y y number_of_points]
%
% Outputs
% D - Decision sufrace
% Wh - Hidden unit weights
% Wo - Output unit weights
[Nh, Theta, eta] = process_params(params);
iter = 0;
DispIter = 10;
[Ni, M] = size(train_features);
No = 1;
%For the decision region
xx = linspace(region(1),region(2),region(5));
yy = linspace(region(3),region(4),region(5));
D = zeros(region(5));
train_targets = (train_targets>0)*2-1;
means = mean(train_features')';
train_features= train_features - means*ones(1,M);
%Initialize the net: In this implementation there is only one output unit, so there
%will be a weight vector from the hidden units to the output units, and a weight matrix
%from the input units to the hidden units.
%The matrices are defined with one more weight so that there will be a bias
w0 = max(abs(std(train_features')'));
Wh = rand(Nh, Ni+1).*w0*2-w0; %Hidden weights
Wo = rand(No, Nh+1).*w0*2-w0; %Output weights
Wo = Wo/mean(std(Wo'))*(Nh+1)^(-0.5);
Wh = Wh/mean(std(Wh'))*(Ni+1)^(-0.5);
rate = 10*Theta;
J = 1e3;
while (rate > Theta),
deltaWo = 0;
deltaWh = 0;
for m = 1:M,
Xm = train_features(:,m);
tk = train_targets(m);
%Forward propagate the input:
%First to the hidden units
gh = Wh*[Xm; 1];
[y, dfh] = activation(gh);
%Now to the output unit
go = Wo*[y; 1];
[zk, dfo] = activation(go);
%Now, evaluate delta_k at the output: delta_k = (tk-zk)*f'(net)
delta_k = (tk - zk).*dfo;
%...and delta_j: delta_j = f'(net)*w_j*delta_k
delta_j = dfh'.*Wo(1:end-1).*delta_k;
%delta_w_kj <- w_kj + eta*delta_k*y_j
deltaWo = deltaWo + eta*delta_k*[y;1]';
%delta_w_ji <- w_ji + eta*delta_j*[Xm;1]
deltaWh = deltaWh + eta*delta_j'*[Xm;1]';
end
%w_kj <- w_kj + eta*delta_Wo
Wo = Wo + deltaWo;
%w_ji <- w_ji + eta*delta_Wh
Wh = Wh + deltaWh;
%Calculate total error
OldJ = J;
J = 0;
for i = 1:M,
J = J + (train_targets(i) - activation(Wo*[activation(Wh*[train_features(:,i); 1]); 1])).^2;
end
J = J/M;
rate = abs(J - OldJ)/OldJ*100;
iter = iter + 1;
if (iter/DispIter == floor(iter/DispIter)),
disp(['Iteration ' num2str(iter) ': Total error is ' num2str(J)])
end
end
disp(['Backpropagation converged after ' num2str(iter) ' iterations.'])
%Find the decision region
for i = 1:region(5),
for j = 1:region(5),
Xm = [xx(i); yy(j)] - means;
D(i,j) = activation(Wo*[activation(Wh*[Xm; 1]); 1]);
end
end
D = D'>0;
function [f, df] = activation(x)
a = 1.716;
b = 2/3;
f = a*tanh(b*x);
df = a*b*sech(b*x).^2;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -