📄 dp-bit.c
字号:
/* This is a software floating point library which can be used instead of the floating point routines in libgcc1.c for targets without hardware floating point. *//* Copyright (C) 1994 Free Software Foundation, Inc.This file is free software; you can redistribute it and/or modify itunder the terms of the GNU General Public License as published by theFree Software Foundation; either version 2, or (at your option) anylater version.In addition to the permissions in the GNU General Public License, theFree Software Foundation gives you unlimited permission to link thecompiled version of this file with other programs, and to distributethose programs without any restriction coming from the use of thisfile. (The General Public License restrictions do apply in otherrespects; for example, they cover modification of the file, anddistribution when not linked into another program.)This file is distributed in the hope that it will be useful, butWITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNUGeneral Public License for more details.You should have received a copy of the GNU General Public Licensealong with this program; see the file COPYING. If not, write tothe Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. *//* As a special exception, if you link this library with other files, some of which are compiled with GCC, to produce an executable, this library does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. *//* This implements IEEE 754 format arithmetic, but does not provide a mechanism for setting the rounding mode, or for generating or handling exceptions. The original code by Steve Chamberlain, hacked by Mark Eichin and Jim Wilson, all of Cygnus Support. *//* The intended way to use this file is to make two copies, add `#define FLOAT' to one copy, then compile both copies and add them to libgcc.a. *//* The following macros can be defined to change the behaviour of this file: FLOAT: Implement a `float', aka SFmode, fp library. If this is not defined, then this file implements a `double', aka DFmode, fp library. FLOAT_ONLY: Used with FLOAT, to implement a `float' only library, i.e. don't include float->double conversion which requires the double library. This is useful only for machines which can't support doubles, e.g. some 8-bit processors. CMPtype: Specify the type that floating point compares should return. This defaults to SItype, aka int. US_SOFTWARE_GOFAST: This makes all entry points use the same names as the US Software goFast library. If this is not defined, the entry points use the same names as libgcc1.c. _DEBUG_BITFLOAT: This makes debugging the code a little easier, by adding two integers to the FLO_union_type. NO_NANS: Disable nan and infinity handling SMALL_MACHINE: Useful when operations on QIs and HIs are faster than on an SI */#ifndef SFtypetypedef SFtype __attribute__ ((mode (SF)));#endif#ifndef DFtypetypedef DFtype __attribute__ ((mode (DF)));#endif#ifndef HItypetypedef int HItype __attribute__ ((mode (HI)));#endif#ifndef SItypetypedef int SItype __attribute__ ((mode (SI)));#endif#ifndef DItypetypedef int DItype __attribute__ ((mode (DI)));#endif/* The type of the result of a fp compare */#ifndef CMPtype#define CMPtype SItype#endif#ifndef UHItypetypedef unsigned int UHItype __attribute__ ((mode (HI)));#endif#ifndef USItypetypedef unsigned int USItype __attribute__ ((mode (SI)));#endif#ifndef UDItypetypedef unsigned int UDItype __attribute__ ((mode (DI)));#endif#define MAX_SI_INT ((SItype) ((unsigned) (~0)>>1))#define MAX_USI_INT ((USItype) ~0)#ifdef FLOAT_ONLY#define NO_DI_MODE#endif#ifdef FLOAT# define NGARDS 7L# define GARDROUND 0x3f# define GARDMASK 0x7f# define GARDMSB 0x40# define EXPBITS 8# define EXPBIAS 127# define FRACBITS 23# define EXPMAX (0xff)# define QUIET_NAN 0x100000L# define FRAC_NBITS 32# define FRACHIGH 0x80000000L# define FRACHIGH2 0xc0000000L typedef USItype fractype; typedef UHItype halffractype; typedef SFtype FLO_type; typedef SItype intfrac;#else# define PREFIXFPDP dp# define PREFIXSFDF df# define NGARDS 8L# define GARDROUND 0x7f# define GARDMASK 0xff# define GARDMSB 0x80# define EXPBITS 11# define EXPBIAS 1023# define FRACBITS 52# define EXPMAX (0x7ff)# define QUIET_NAN 0x8000000000000LL# define FRAC_NBITS 64# define FRACHIGH 0x8000000000000000LL# define FRACHIGH2 0xc000000000000000LL typedef UDItype fractype; typedef USItype halffractype; typedef DFtype FLO_type; typedef DItype intfrac;#endif#ifdef US_SOFTWARE_GOFAST# ifdef FLOAT# define add fpadd# define sub fpsub# define multiply fpmul# define divide fpdiv# define compare fpcmp# define si_to_float sitofp# define float_to_si fptosi# define float_to_usi fptoui# define negate __negsf2# define sf_to_df fptodp# define dptofp dptofp#else# define add dpadd# define sub dpsub# define multiply dpmul# define divide dpdiv# define compare dpcmp# define si_to_float litodp# define float_to_si dptoli# define float_to_usi dptoul# define negate __negdf2# define df_to_sf dptofp#endif#else# ifdef FLOAT# define add __addsf3# define sub __subsf3# define multiply __mulsf3# define divide __divsf3# define compare __cmpsf2# define _eq_f2 __eqsf2# define _ne_f2 __nesf2# define _gt_f2 __gtsf2# define _ge_f2 __gesf2# define _lt_f2 __ltsf2# define _le_f2 __lesf2# define si_to_float __floatsisf# define float_to_si __fixsfsi# define float_to_usi __fixunssfsi# define negate __negsf2# define sf_to_df __extendsfdf2#else# define add __adddf3# define sub __subdf3# define multiply __muldf3# define divide __divdf3# define compare __cmpdf2# define _eq_f2 __eqdf2# define _ne_f2 __nedf2# define _gt_f2 __gtdf2# define _ge_f2 __gedf2# define _lt_f2 __ltdf2# define _le_f2 __ledf2# define si_to_float __floatsidf# define float_to_si __fixdfsi# define float_to_usi __fixunsdfsi# define negate __negdf2# define df_to_sf __truncdfsf2# endif#endif#ifndef INLINE#define INLINE __inline__#endif/* Preserve the sticky-bit when shifting fractions to the right. */#define LSHIFT(a) { a = (a & 1) | (a >> 1); }/* numeric parameters *//* F_D_BITOFF is the number of bits offset between the MSB of the mantissa of a float and of a double. Assumes there are only two float types. (double::FRAC_BITS+double::NGARGS-(float::FRAC_BITS-float::NGARDS)) */#define F_D_BITOFF (52+8-(23+7))#define NORMAL_EXPMIN (-(EXPBIAS)+1)#define IMPLICIT_1 (1LL<<(FRACBITS+NGARDS))#define IMPLICIT_2 (1LL<<(FRACBITS+1+NGARDS))/* common types */typedef enum{ CLASS_SNAN, CLASS_QNAN, CLASS_ZERO, CLASS_NUMBER, CLASS_INFINITY} fp_class_type;typedef struct{#ifdef SMALL_MACHINE char class; unsigned char sign; short normal_exp;#else fp_class_type class; unsigned int sign; int normal_exp;#endif union { fractype ll; halffractype l[2]; } fraction;} fp_number_type;typedef union{ FLO_type value;#ifdef _DEBUG_BITFLOAT int l[2];#endif struct {#ifndef FLOAT_BIT_ORDER_MISMATCH unsigned int sign:1 __attribute__ ((packed)); unsigned int exp:EXPBITS __attribute__ ((packed)); fractype fraction:FRACBITS __attribute__ ((packed));#else fractype fraction:FRACBITS __attribute__ ((packed)); unsigned int exp:EXPBITS __attribute__ ((packed)); unsigned int sign:1 __attribute__ ((packed));#endif } bits;}FLO_union_type;/* end of header *//* IEEE "special" number predicates */#ifdef NO_NANS#define nan() 0#define isnan(x) 0#define isinf(x) 0#elseINLINEstatic fp_number_type *nan (){ static fp_number_type thenan; return &thenan;}INLINEstatic intisnan ( fp_number_type * x){ return x->class == CLASS_SNAN || x->class == CLASS_QNAN;}INLINEstatic intisinf ( fp_number_type * x){ return x->class == CLASS_INFINITY;}#endifINLINEstatic intiszero ( fp_number_type * x){ return x->class == CLASS_ZERO;}INLINE static voidflip_sign ( fp_number_type * x){ x->sign = !x->sign;}static FLO_typepack_d ( fp_number_type * src){ FLO_union_type dst; fractype fraction = src->fraction.ll; /* wasn't unsigned before? */ dst.bits.sign = src->sign; if (isnan (src)) { dst.bits.exp = EXPMAX; dst.bits.fraction = src->fraction.ll; if (src->class == CLASS_QNAN || 1) { dst.bits.fraction |= QUIET_NAN; } } else if (isinf (src)) { dst.bits.exp = EXPMAX; dst.bits.fraction = 0; } else if (iszero (src)) { dst.bits.exp = 0; dst.bits.fraction = 0; } else if (fraction == 0) { dst.value = 0; } else { if (src->normal_exp < NORMAL_EXPMIN) { /* This number's exponent is too low to fit into the bits available in the number, so we'll store 0 in the exponent and shift the fraction to the right to make up for it. */ int shift = NORMAL_EXPMIN - src->normal_exp; dst.bits.exp = 0; if (shift > FRAC_NBITS - NGARDS) { /* No point shifting, since it's more that 64 out. */ fraction = 0; } else { /* Shift by the value */ fraction >>= shift; } fraction >>= NGARDS; dst.bits.fraction = fraction; } else if (src->normal_exp > EXPBIAS) { dst.bits.exp = EXPMAX; dst.bits.fraction = 0; } else { dst.bits.exp = src->normal_exp + EXPBIAS; /* IF the gard bits are the all zero, but the first, then we're half way between two numbers, choose the one which makes the lsb of the answer 0. */ if ((fraction & GARDMASK) == GARDMSB) { if (fraction & (1 << NGARDS)) fraction += GARDROUND + 1; } else { /* Add a one to the guards to round up */ fraction += GARDROUND; } if (fraction >= IMPLICIT_2) { fraction >>= 1; dst.bits.exp += 1; } fraction >>= NGARDS; dst.bits.fraction = fraction; } } return dst.value;}static voidunpack_d (FLO_union_type * src, fp_number_type * dst){ fractype fraction = src->bits.fraction; dst->sign = src->bits.sign; if (src->bits.exp == 0) { /* Hmm. Looks like 0 */ if (fraction == 0) { /* tastes like zero */ dst->class = CLASS_ZERO; } else { /* Zero exponent with non zero fraction - it's denormalized, so there isn't a leading implicit one - we'll shift it so it gets one. */ dst->normal_exp = src->bits.exp - EXPBIAS + 1; fraction <<= NGARDS; dst->class = CLASS_NUMBER;#if 1 while (fraction < IMPLICIT_1) { fraction <<= 1; dst->normal_exp--; }#endif dst->fraction.ll = fraction; } } else if (src->bits.exp == EXPMAX) { /* Huge exponent*/ if (fraction == 0) { /* Attached to a zero fraction - means infinity */ dst->class = CLASS_INFINITY; } else { /* Non zero fraction, means nan */ if (dst->sign) { dst->class = CLASS_SNAN; } else { dst->class = CLASS_QNAN; } /* Keep the fraction part as the nan number */ dst->fraction.ll = fraction; } } else { /* Nothing strange about this number */ dst->normal_exp = src->bits.exp - EXPBIAS; dst->class = CLASS_NUMBER; dst->fraction.ll = (fraction << NGARDS) | IMPLICIT_1; }}static fp_number_type *_fpadd_parts (fp_number_type * a, fp_number_type * b, fp_number_type * tmp){ intfrac tfraction; /* Put commonly used fields in local variables. */ int a_normal_exp; int b_normal_exp; fractype a_fraction; fractype b_fraction; if (isnan (a)) { return a; } if (isnan (b)) { return b; } if (isinf (a)) { /* Adding infinities with opposite signs yields a NaN. */ if (isinf (b) && a->sign != b->sign) return nan (); return a; } if (isinf (b)) { return b; } if (iszero (b)) { return a; } if (iszero (a)) { return b; } /* Got two numbers. shift the smaller and increment the exponent till they're the same */ { int diff; a_normal_exp = a->normal_exp; b_normal_exp = b->normal_exp; a_fraction = a->fraction.ll; b_fraction = b->fraction.ll; diff = a_normal_exp - b_normal_exp; if (diff < 0) diff = -diff; if (diff < FRAC_NBITS) { /* ??? This does shifts one bit at a time. Optimize. */ while (a_normal_exp > b_normal_exp) { b_normal_exp++; LSHIFT (b_fraction); } while (b_normal_exp > a_normal_exp) { a_normal_exp++; LSHIFT (a_fraction); } } else { /* Somethings's up.. choose the biggest */ if (a_normal_exp > b_normal_exp) { b_normal_exp = a_normal_exp; b_fraction = 0; } else { a_normal_exp = b_normal_exp; a_fraction = 0; } } } if (a->sign != b->sign) { if (a->sign) { tfraction = -a_fraction + b_fraction; } else { tfraction = a_fraction - b_fraction; } if (tfraction > 0) { tmp->sign = 0; tmp->normal_exp = a_normal_exp; tmp->fraction.ll = tfraction; } else { tmp->sign = 1; tmp->normal_exp = a_normal_exp; tmp->fraction.ll = -tfraction; } /* and renormalize it */ while (tmp->fraction.ll < IMPLICIT_1 && tmp->fraction.ll) { tmp->fraction.ll <<= 1; tmp->normal_exp--; } } else { tmp->sign = a->sign; tmp->normal_exp = a_normal_exp; tmp->fraction.ll = a_fraction + b_fraction; } tmp->class = CLASS_NUMBER; /* Now the fraction is added, we have to shift down to renormalize the number */ if (tmp->fraction.ll >= IMPLICIT_2) { LSHIFT (tmp->fraction.ll); tmp->normal_exp++; } return tmp;}FLO_typeadd (FLO_type arg_a, FLO_type arg_b){ fp_number_type a; fp_number_type b; fp_number_type tmp; fp_number_type *res; unpack_d ((FLO_union_type *) & arg_a, &a); unpack_d ((FLO_union_type *) & arg_b, &b); res = _fpadd_parts (&a, &b, &tmp); return pack_d (res);}FLO_typesub (FLO_type arg_a, FLO_type arg_b){ fp_number_type a; fp_number_type b; fp_number_type tmp; fp_number_type *res; unpack_d ((FLO_union_type *) & arg_a, &a); unpack_d ((FLO_union_type *) & arg_b, &b); b.sign ^= 1; res = _fpadd_parts (&a, &b, &tmp); return pack_d (res);}static fp_number_type *_fpmul_parts ( fp_number_type * a, fp_number_type * b, fp_number_type * tmp)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -