⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 d10v_sim.h

📁 这个是LINUX下的GDB调度工具的源码
💻 H
字号:
#include "config.h"#include <stdio.h>#include <ctype.h>#include <limits.h>#include "ansidecl.h"#include "gdb/callback.h"#include "opcode/d10v.h"#include "bfd.h"#define DEBUG_TRACE		0x00000001#define DEBUG_VALUES		0x00000002#define DEBUG_LINE_NUMBER	0x00000004#define DEBUG_MEMSIZE		0x00000008#define DEBUG_INSTRUCTION	0x00000010#define DEBUG_TRAP		0x00000020#define DEBUG_MEMORY		0x00000040#ifndef	DEBUG#define	DEBUG (DEBUG_TRACE | DEBUG_VALUES | DEBUG_LINE_NUMBER)#endifextern int d10v_debug;#include "gdb/remote-sim.h"#include "sim-config.h"#include "sim-types.h"typedef unsigned8 uint8;typedef unsigned16 uint16;typedef signed16 int16;typedef unsigned32 uint32;typedef signed32 int32;typedef unsigned64 uint64;typedef signed64 int64;/* FIXME: D10V defines */typedef uint16 reg_t;struct simops {  long opcode;  int  is_long;  long mask;  int format;  int cycles;  int unit;  int exec_type;  void (*func)();  int numops;  int operands[9];};enum _ins_type{  INS_UNKNOWN,			/* unknown instruction */  INS_COND_TRUE,		/* # times EXExxx executed other instruction */  INS_COND_FALSE,		/* # times EXExxx did not execute other instruction */  INS_COND_JUMP,		/* # times JUMP skipped other instruction */  INS_CYCLES,			/* # cycles */  INS_LONG,			/* long instruction (both containers, ie FM == 11) */  INS_LEFTRIGHT,		/* # times instruction encoded as L -> R (ie, FM == 01) */  INS_RIGHTLEFT,		/* # times instruction encoded as L <- R (ie, FM == 10) */  INS_PARALLEL,			/* # times instruction encoded as L || R (ie, RM == 00) */  INS_LEFT,			/* normal left instructions */  INS_LEFT_PARALLEL,		/* left side of || */  INS_LEFT_COND_TEST,		/* EXExx test on left side */  INS_LEFT_COND_EXE,		/* execution after EXExxx test on right side succeeded */  INS_LEFT_NOPS,		/* NOP on left side */  INS_RIGHT,			/* normal right instructions */  INS_RIGHT_PARALLEL,		/* right side of || */  INS_RIGHT_COND_TEST,		/* EXExx test on right side */  INS_RIGHT_COND_EXE,		/* execution after EXExxx test on left side succeeded */  INS_RIGHT_NOPS,		/* NOP on right side */  INS_MAX};extern unsigned long ins_type_counters[ (int)INS_MAX ];enum {  SP_IDX = 15,};/* Write-back slots */union slot_data {  unsigned_1 _1;  unsigned_2 _2;  unsigned_4 _4;  unsigned_8 _8;};struct slot {  void *dest;  int size;  union slot_data data;  union slot_data mask;};enum { NR_SLOTS = 16,};#define SLOT (State.slot)#define SLOT_NR (State.slot_nr)#define SLOT_PEND_MASK(DEST, MSK, VAL) \  do \    { \      SLOT[SLOT_NR].dest = &(DEST); \      SLOT[SLOT_NR].size = sizeof (DEST); \      switch (sizeof (DEST)) \        { \        case 1: \          SLOT[SLOT_NR].data._1 = (unsigned_1) (VAL); \          SLOT[SLOT_NR].mask._1 = (unsigned_1) (MSK); \          break; \        case 2: \          SLOT[SLOT_NR].data._2 = (unsigned_2) (VAL); \          SLOT[SLOT_NR].mask._2 = (unsigned_2) (MSK); \          break; \        case 4: \          SLOT[SLOT_NR].data._4 = (unsigned_4) (VAL); \          SLOT[SLOT_NR].mask._4 = (unsigned_4) (MSK); \          break; \        case 8: \          SLOT[SLOT_NR].data._8 = (unsigned_8) (VAL); \          SLOT[SLOT_NR].mask._8 = (unsigned_8) (MSK); \          break; \        } \      SLOT_NR = (SLOT_NR + 1); \    } \  while (0)#define SLOT_PEND(DEST, VAL) SLOT_PEND_MASK(DEST, 0, VAL)#define SLOT_DISCARD() (SLOT_NR = 0)#define SLOT_FLUSH() \  do \    { \      int i; \      for (i = 0; i < SLOT_NR; i++) \	{ \	  switch (SLOT[i].size) \	    { \	    case 1: \	      *(unsigned_1*) SLOT[i].dest &= SLOT[i].mask._1; \	      *(unsigned_1*) SLOT[i].dest |= SLOT[i].data._1; \	      break; \	    case 2: \	      *(unsigned_2*) SLOT[i].dest &= SLOT[i].mask._2; \	      *(unsigned_2*) SLOT[i].dest |= SLOT[i].data._2; \	      break; \	    case 4: \	      *(unsigned_4*) SLOT[i].dest &= SLOT[i].mask._4; \	      *(unsigned_4*) SLOT[i].dest |= SLOT[i].data._4; \	      break; \	    case 8: \	      *(unsigned_8*) SLOT[i].dest &= SLOT[i].mask._8; \	      *(unsigned_8*) SLOT[i].dest |= SLOT[i].data._8; \	      break; \	    } \        } \      SLOT_NR = 0; \    } \  while (0)#define SLOT_DUMP() \  do \    { \      int i; \      for (i = 0; i < SLOT_NR; i++) \	{ \	  switch (SLOT[i].size) \	    { \	    case 1: \              printf ("SLOT %d *0x%08lx & 0x%02x | 0x%02x\n", i, \		      (long) SLOT[i].dest, \                      (unsigned) SLOT[i].mask._1, \                      (unsigned) SLOT[i].data._1); \	      break; \	    case 2: \              printf ("SLOT %d *0x%08lx & 0x%04x | 0x%04x\n", i, \		      (long) SLOT[i].dest, \                      (unsigned) SLOT[i].mask._2, \                      (unsigned) SLOT[i].data._2); \	      break; \	    case 4: \              printf ("SLOT %d *0x%08lx & 0x%08x | 0x%08x\n", i, \		      (long) SLOT[i].dest, \                      (unsigned) SLOT[i].mask._4, \                      (unsigned) SLOT[i].data._4); \	      break; \	    case 8: \              printf ("SLOT %d *0x%08lx & 0x%08x%08x | 0x%08x%08x\n", i, \		      (long) SLOT[i].dest, \                      (unsigned) (SLOT[i].mask._8 >> 32),  \                      (unsigned) SLOT[i].mask._8, \                      (unsigned) (SLOT[i].data._8 >> 32),  \                      (unsigned) SLOT[i].data._8); \	      break; \	    } \        } \    } \  while (0)/* d10v memory: There are three separate d10v memory regions IMEM,   UMEM and DMEM.  The IMEM and DMEM are further broken down into   blocks (very like VM pages). */enum{  IMAP_BLOCK_SIZE = 0x20000,  DMAP_BLOCK_SIZE = 0x4000,};/* Implement the three memory regions using sparse arrays.  Allocate   memory using ``segments''.  A segment must be at least as large as   a BLOCK - ensures that an access that doesn't cross a block   boundary can't cross a segment boundary */enum{  SEGMENT_SIZE = 0x20000, /* 128KB - MAX(IMAP_BLOCK_SIZE,DMAP_BLOCK_SIZE) */  IMEM_SEGMENTS = 8, /* 1MB */  DMEM_SEGMENTS = 8, /* 1MB */  UMEM_SEGMENTS = 128 /* 16MB */};struct d10v_memory{  uint8 *insn[IMEM_SEGMENTS];  uint8 *data[DMEM_SEGMENTS];  uint8 *unif[UMEM_SEGMENTS];  uint8 fault[16];};struct _state{  reg_t regs[16];		/* general-purpose registers */#define GPR(N) (State.regs[(N)] + 0)#define SET_GPR(N,VAL) SLOT_PEND (State.regs[(N)], (VAL))#define GPR32(N) ((((uint32) State.regs[(N) + 0]) << 16) \		  | (uint16) State.regs[(N) + 1])#define SET_GPR32(N,VAL) do { SET_GPR (OP[0] + 0, (VAL) >> 16); SET_GPR (OP[0] + 1, (VAL)); } while (0)  reg_t cregs[16];		/* control registers */#define CREG(N) (State.cregs[(N)] + 0)#define SET_CREG(N,VAL) move_to_cr ((N), 0, (VAL), 0)#define SET_HW_CREG(N,VAL) move_to_cr ((N), 0, (VAL), 1)  reg_t sp[2];                  /* holding area for SPI(0)/SPU(1) */#define HELD_SP(N) (State.sp[(N)] + 0)#define SET_HELD_SP(N,VAL) SLOT_PEND (State.sp[(N)], (VAL))  int64 a[2];			/* accumulators */#define ACC(N) (State.a[(N)] + 0)#define SET_ACC(N,VAL) SLOT_PEND (State.a[(N)], (VAL) & MASK40)  /* writeback info */  struct slot slot[NR_SLOTS];  int slot_nr;  /* trace data */  struct {    uint16 psw;  } trace;  uint8 exe;  int	exception;  int	pc_changed;  /* NOTE: everything below this line is not reset by     sim_create_inferior() */  struct d10v_memory mem;  enum _ins_type ins_type;} State;extern host_callback *d10v_callback;extern uint16 OP[4];extern struct simops Simops[];extern asection *text;extern bfd_vma text_start;extern bfd_vma text_end;extern bfd *prog_bfd;enum{  PSW_CR = 0,  BPSW_CR = 1,  PC_CR = 2,  BPC_CR = 3,  DPSW_CR = 4,  DPC_CR = 5,  RPT_C_CR = 7,  RPT_S_CR = 8,  RPT_E_CR = 9,  MOD_S_CR = 10,  MOD_E_CR = 11,  IBA_CR = 14,};enum{  PSW_SM_BIT = 0x8000,  PSW_EA_BIT = 0x2000,  PSW_DB_BIT = 0x1000,  PSW_DM_BIT = 0x0800,  PSW_IE_BIT = 0x0400,  PSW_RP_BIT = 0x0200,  PSW_MD_BIT = 0x0100,  PSW_FX_BIT = 0x0080,  PSW_ST_BIT = 0x0040,  PSW_F0_BIT = 0x0008,  PSW_F1_BIT = 0x0004,  PSW_C_BIT =  0x0001,};#define PSW CREG (PSW_CR)#define SET_PSW(VAL) SET_CREG (PSW_CR, (VAL))#define SET_HW_PSW(VAL) SET_HW_CREG (PSW_CR, (VAL))#define SET_PSW_BIT(MASK,VAL) move_to_cr (PSW_CR, ~((reg_t) MASK), (VAL) ? (MASK) : 0, 1)#define PSW_SM ((PSW & PSW_SM_BIT) != 0)#define SET_PSW_SM(VAL) SET_PSW_BIT (PSW_SM_BIT, (VAL))#define PSW_EA ((PSW & PSW_EA_BIT) != 0)#define SET_PSW_EA(VAL) SET_PSW_BIT (PSW_EA_BIT, (VAL))#define PSW_DB ((PSW & PSW_DB_BIT) != 0)#define SET_PSW_DB(VAL) SET_PSW_BIT (PSW_DB_BIT, (VAL))#define PSW_DM ((PSW & PSW_DM_BIT) != 0)#define SET_PSW_DM(VAL) SET_PSW_BIT (PSW_DM_BIT, (VAL))#define PSW_IE ((PSW & PSW_IE_BIT) != 0)#define SET_PSW_IE(VAL) SET_PSW_BIT (PSW_IE_BIT, (VAL))#define PSW_RP ((PSW & PSW_RP_BIT) != 0)#define SET_PSW_RP(VAL) SET_PSW_BIT (PSW_RP_BIT, (VAL))#define PSW_MD ((PSW & PSW_MD_BIT) != 0)#define SET_PSW_MD(VAL) SET_PSW_BIT (PSW_MD_BIT, (VAL))#define PSW_FX ((PSW & PSW_FX_BIT) != 0)#define SET_PSW_FX(VAL) SET_PSW_BIT (PSW_FX_BIT, (VAL))#define PSW_ST ((PSW & PSW_ST_BIT) != 0)#define SET_PSW_ST(VAL) SET_PSW_BIT (PSW_ST_BIT, (VAL))#define PSW_F0 ((PSW & PSW_F0_BIT) != 0)#define SET_PSW_F0(VAL) SET_PSW_BIT (PSW_F0_BIT, (VAL))#define PSW_F1 ((PSW & PSW_F1_BIT) != 0)#define SET_PSW_F1(VAL) SET_PSW_BIT (PSW_F1_BIT, (VAL))#define PSW_C ((PSW & PSW_C_BIT) != 0)#define SET_PSW_C(VAL) SET_PSW_BIT (PSW_C_BIT, (VAL))/* See simopsc.:move_to_cr() for registers that can not be read-from   or assigned-to directly */#define PC	CREG (PC_CR)#define SET_PC(VAL) SET_CREG (PC_CR, (VAL))#define BPSW	CREG (BPSW_CR)#define SET_BPSW(VAL) SET_CREG (BPSW_CR, (VAL))#define BPC	CREG (BPC_CR)#define SET_BPC(VAL) SET_CREG (BPC_CR, (VAL))#define DPSW	CREG (DPSW_CR)#define SET_DPSW(VAL) SET_CREG (DPSW_CR, (VAL))#define DPC	CREG (DPC_CR)#define SET_DPC(VAL) SET_CREG (DPC_CR, (VAL))#define RPT_C	CREG (RPT_C_CR)#define SET_RPT_C(VAL) SET_CREG (RPT_C_CR, (VAL))#define RPT_S	CREG (RPT_S_CR)#define SET_RPT_S(VAL) SET_CREG (RPT_S_CR, (VAL))#define RPT_E	CREG (RPT_E_CR)#define SET_RPT_E(VAL) SET_CREG (RPT_E_CR, (VAL))#define MOD_S	CREG (MOD_S_CR)#define SET_MOD_S(VAL) SET_CREG (MOD_S_CR, (VAL))#define MOD_E	CREG (MOD_E_CR)#define SET_MOD_E(VAL) SET_CREG (MOD_E_CR, (VAL))#define IBA	CREG (IBA_CR)#define SET_IBA(VAL) SET_CREG (IBA_CR, (VAL))#define SIG_D10V_STOP	-1#define SIG_D10V_EXIT	-2#define SIG_D10V_BUS    -3#define SEXT3(x)	((((x)&0x7)^(~3))+4)	/* sign-extend a 4-bit number */#define SEXT4(x)	((((x)&0xf)^(~7))+8)	/* sign-extend an 8-bit number */#define SEXT8(x)	((((x)&0xff)^(~0x7f))+0x80)/* sign-extend a 16-bit number */#define SEXT16(x)	((((x)&0xffff)^(~0x7fff))+0x8000)/* sign-extend a 32-bit number */#define SEXT32(x)	((((x)&SIGNED64(0xffffffff))^(~SIGNED64(0x7fffffff)))+SIGNED64(0x80000000))/* sign extend a 40 bit number */#define SEXT40(x)	((((x)&SIGNED64(0xffffffffff))^(~SIGNED64(0x7fffffffff)))+SIGNED64(0x8000000000))/* sign extend a 44 bit number */#define SEXT44(x)	((((x)&SIGNED64(0xfffffffffff))^(~SIGNED64(0x7ffffffffff)))+SIGNED64(0x80000000000))/* sign extend a 56 bit number */#define SEXT56(x)	((((x)&SIGNED64(0xffffffffffffff))^(~SIGNED64(0x7fffffffffffff)))+SIGNED64(0x80000000000000))/* sign extend a 60 bit number */#define SEXT60(x)	((((x)&SIGNED64(0xfffffffffffffff))^(~SIGNED64(0x7ffffffffffffff)))+SIGNED64(0x800000000000000))#define MAX32	SIGNED64(0x7fffffff)#define MIN32	SIGNED64(0xff80000000)#define MASK32	SIGNED64(0xffffffff)#define MASK40	SIGNED64(0xffffffffff)/* The alignment of MOD_E in the following macro depends upon "i"   always being a power of 2. */#define INC_ADDR(x,i) \do \  { \    int test_i = i < 0 ? i : ~((i) - 1); \    if (PSW_MD && GPR (x) == (MOD_E & test_i)) \      SET_GPR (x, MOD_S & test_i); \    else \      SET_GPR (x, GPR (x) + (i)); \  } \while (0)extern uint8 *dmem_addr (uint16 offset);extern uint8 *imem_addr PARAMS ((uint32));extern bfd_vma decode_pc PARAMS ((void));#define	RB(x)	(*(dmem_addr(x)))#define SB(addr,data)	( RB(addr) = (data & 0xff))#if defined(__GNUC__) && defined(__OPTIMIZE__) && !defined(NO_ENDIAN_INLINE)#define ENDIAN_INLINE static __inline__#include "endian.c"#undef ENDIAN_INLINE#elseextern uint32 get_longword PARAMS ((uint8 *));extern uint16 get_word PARAMS ((uint8 *));extern int64 get_longlong PARAMS ((uint8 *));extern void write_word PARAMS ((uint8 *addr, uint16 data));extern void write_longword PARAMS ((uint8 *addr, uint32 data));extern void write_longlong PARAMS ((uint8 *addr, int64 data));#endif#define SW(addr,data)		write_word(dmem_addr(addr),data)#define RW(x)			get_word(dmem_addr(x))#define SLW(addr,data)  	write_longword(dmem_addr(addr),data)#define RLW(x)			get_longword(dmem_addr(x))#define READ_16(x)		get_word(x)#define WRITE_16(addr,data)	write_word(addr,data)#define READ_64(x)		get_longlong(x)#define WRITE_64(addr,data)	write_longlong(addr,data)#define JMP(x)			do { SET_PC (x); State.pc_changed = 1; } while (0)#define RIE_VECTOR_START 0xffc2#define AE_VECTOR_START 0xffc3#define TRAP_VECTOR_START 0xffc4	/* vector for trap 0 */#define DBT_VECTOR_START 0xffd4#define SDBT_VECTOR_START 0xffd5/* Scedule a store of VAL into cr[CR].  MASK indicates the bits in   cr[CR] that should not be modified (i.e. cr[CR] = (cr[CR] & MASK) |   (VAL & ~MASK)).  In addition, unless PSW_HW_P, a VAL intended for   PSW is masked for zero bits. */extern reg_t move_to_cr (int cr, reg_t mask, reg_t val, int psw_hw_p);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -