⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kdtree.m

📁 用matlab编写的k-dtree
💻 M
字号:
% FUNCTION kdtree = kdtree_create(points)
%
% AUTHOR:     Steven Michael
%             (smichael@ll.mit.edu)
%
% DATE:       2/17/05
%
% DESCRIPTION:
%
%  This function creates a KD Tree from the given points
%  and outputs it in the abstract object "kdtree"
%  The "kdtree" object can then be used for range finding
%  and nearest neighbor searching.
%
% INPUTS:
%
%   points   :     A (npoints X ndim) array of points, where "npoints"
%                  is the number of points and "ndim" is the number
%                  of dimensions.  Note that the points, even if they
%                  are double precision, will be converted to single
%                  precision when the tree is populated.  This is for 
%                  speed -- most kdtree search applications don't
%                  necessitate double precision data.
%
% OUTPUTS:
%
%   kdtree   :     The abstract KD Tree object.
%
%
% Example: 
% 
%    % Create a list of 1000 random points in 3d space
%    r = rand(1000,3);
% 
%    % Create a tree from this list
%    tree = kdtree(r);
% 
%    % Find the point closest to the origin
%    [pntidx,pntval] = kdtree_closestpoint(tree,[0 0 0]);
%
%    % Create a list "r2" of 100 random points in 3d space and
%    % find the points in "r" that are closest to each point in "r2"
%    [pntidx,pntval] = kdtree_closestpoint(tree,r2);
%
%    % Find all the points within the cube defined by "rng"
%    rng = [ [.45 .55]; [.45 .55]; ; [.45 .55] ];
%    pntidx = kdtree_range(tree,rng);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -