⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bitops.h

📁 arm_uclinux_tools用于安装linux的编译器
💻 H
字号:
/* * Copyright 1995, Russell King. * Various bits and pieces copyrights include: *  Linus Torvalds (test_bit). * * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). * * Please note that the code in this file should never be included * from user space.  Many of these are not implemented in assembler * since they would be too costly.  Also, they require priviledged * instructions (which are not available from user mode) to ensure * that they are atomic. */#ifndef __ASM_ARM_BITOPS_H#define __ASM_ARM_BITOPS_H#ifdef __KERNEL__#ifndef __ARMEB__#define smp_mb__before_clear_bit()	do { } while (0)#define smp_mb__after_clear_bit()	do { } while (0)/* * Function prototypes to keep gcc -Wall happy. */extern void set_bit(int nr, volatile void * addr);static inline void __set_bit(int nr, volatile void *addr){	((unsigned char *) addr)[nr >> 3] |= (1U << (nr & 7));}extern void clear_bit(int nr, volatile void * addr);static inline void __clear_bit(int nr, volatile void *addr){	((unsigned char *) addr)[nr >> 3] &= ~(1U << (nr & 7));}extern void change_bit(int nr, volatile void * addr);static inline void __change_bit(int nr, volatile void *addr){	((unsigned char *) addr)[nr >> 3] ^= (1U << (nr & 7));}extern int test_and_set_bit(int nr, volatile void * addr);static inline int __test_and_set_bit(int nr, volatile void *addr){	unsigned int mask = 1 << (nr & 7);	unsigned int oldval;	oldval = ((unsigned char *) addr)[nr >> 3];	((unsigned char *) addr)[nr >> 3] = oldval | mask;	return oldval & mask;}extern int test_and_clear_bit(int nr, volatile void * addr);static inline int __test_and_clear_bit(int nr, volatile void *addr){	unsigned int mask = 1 << (nr & 7);	unsigned int oldval;	oldval = ((unsigned char *) addr)[nr >> 3];	((unsigned char *) addr)[nr >> 3] = oldval & ~mask;	return oldval & mask;}extern int test_and_change_bit(int nr, volatile void * addr);static inline int __test_and_change_bit(int nr, volatile void *addr){	unsigned int mask = 1 << (nr & 7);	unsigned int oldval;	oldval = ((unsigned char *) addr)[nr >> 3];	((unsigned char *) addr)[nr >> 3] = oldval ^ mask;	return oldval & mask;}extern int find_first_zero_bit(void * addr, unsigned size);extern int find_next_zero_bit(void * addr, int size, int offset);/* * This routine doesn't need to be atomic. */extern __inline__ int test_bit(int nr, const void * addr){    return ((unsigned char *) addr)[nr >> 3] & (1U << (nr & 7));}	/* * ffz = Find First Zero in word. Undefined if no zero exists, * so code should check against ~0UL first.. */extern __inline__ unsigned long ffz(unsigned long word){	int k;	word = ~word;	k = 31;	if (word & 0x0000ffff) { k -= 16; word <<= 16; }	if (word & 0x00ff0000) { k -= 8;  word <<= 8;  }	if (word & 0x0f000000) { k -= 4;  word <<= 4;  }	if (word & 0x30000000) { k -= 2;  word <<= 2;  }	if (word & 0x40000000) { k -= 1; }        return k;}/* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */#define ffs(x) generic_ffs(x)#define ext2_set_bit			test_and_set_bit#define ext2_clear_bit			test_and_clear_bit#define ext2_test_bit			test_bit#define ext2_find_first_zero_bit	find_first_zero_bit#define ext2_find_next_zero_bit		find_next_zero_bit/* Bitmap functions for the minix filesystem. */#define minix_test_and_set_bit(nr,addr)	test_and_set_bit(nr,addr)#define minix_set_bit(nr,addr)		set_bit(nr,addr)#define minix_test_and_clear_bit(nr,addr)	test_and_clear_bit(nr,addr)#define minix_test_bit(nr,addr)		test_bit(nr,addr)#define minix_find_first_zero_bit(addr,size)	find_first_zero_bit(addr,size)#else /******* __ARMEB__ *******//* * All these stolen from the m68knommu header,  why ? because * they implement everything and it saves having to fix the * assembler routines in arch/armnommu/lib ;-) */#include <linux/config.h>#include <asm/byteorder.h>	/* swab32 */#include <asm/system.h>		/* save_flags */#ifndef save_and_cli#define save_and_cli(x) do { save_flags(flags); cli(); } while(0)#endifextern void set_bit(int nr, volatile void * addr);extern void __set_bit(int nr, volatile void * addr);extern void clear_bit(int nr, volatile void * addr);extern void change_bit(int nr, volatile void * addr);extern void __change_bit(int nr, volatile void * addr);extern int test_and_set_bit(int nr, volatile void * addr);extern int __test_and_set_bit(int nr, volatile void * addr);extern int test_and_clear_bit(int nr, volatile void * addr);extern int __test_and_clear_bit(int nr, volatile void * addr);extern int test_and_change_bit(int nr, volatile void * addr);extern int __test_and_change_bit(int nr, volatile void * addr);extern int __constant_test_bit(int nr, const volatile void * addr);extern int __test_bit(int nr, volatile void * addr);extern int find_first_zero_bit(void * addr, unsigned size);extern int find_next_zero_bit (void * addr, int size, int offset);/* * ffz = Find First Zero in word. Undefined if no zero exists, * so code should check against ~0UL first.. */extern __inline__ unsigned long ffz(unsigned long word){	unsigned long result = 0;	while(word & 1) {		result++;		word >>= 1;	}	return result;}extern __inline__ void set_bit(int nr, volatile void * addr){	int 	* a = (int *) addr;	int	mask;	unsigned long flags;	a += nr >> 5;	mask = 1 << (nr & 0x1f);	save_flags(flags); cli();	*a |= mask;	restore_flags(flags);}extern __inline__ void __set_bit(int nr, volatile void * addr){	int 	* a = (int *) addr;	int	mask;	a += nr >> 5;	mask = 1 << (nr & 0x1f);	*a |= mask;}/* * clear_bit() doesn't provide any barrier for the compiler. */#define smp_mb__before_clear_bit()	barrier()#define smp_mb__after_clear_bit()	barrier()extern __inline__ void clear_bit(int nr, volatile void * addr){	int 	* a = (int *) addr;	int	mask;	unsigned long flags;	a += nr >> 5;	mask = 1 << (nr & 0x1f);	save_flags(flags); cli();	*a &= ~mask;	restore_flags(flags);}extern __inline__ void change_bit(int nr, volatile void * addr){	int mask, flags;	unsigned long *ADDR = (unsigned long *) addr;	ADDR += nr >> 5;	mask = 1 << (nr & 31);	save_flags(flags); cli();	*ADDR ^= mask;	restore_flags(flags);}extern __inline__ void __change_bit(int nr, volatile void * addr){	int mask;	unsigned long *ADDR = (unsigned long *) addr;	ADDR += nr >> 5;	mask = 1 << (nr & 31);	*ADDR ^= mask;}extern __inline__ int test_and_set_bit(int nr, volatile void * addr){	int	mask, retval;	volatile unsigned int *a = (volatile unsigned int *) addr;	unsigned long flags;	a += nr >> 5;	mask = 1 << (nr & 0x1f);	save_and_cli(flags);	retval = (mask & *a) != 0;	*a |= mask;	restore_flags(flags);	return retval;}extern __inline__ int __test_and_set_bit(int nr, volatile void * addr){	int	mask, retval;	volatile unsigned int *a = (volatile unsigned int *) addr;	a += nr >> 5;	mask = 1 << (nr & 0x1f);	retval = (mask & *a) != 0;	*a |= mask;	return retval;}extern __inline__ int test_and_clear_bit(int nr, volatile void * addr){	int	mask, retval;	volatile unsigned int *a = (volatile unsigned int *) addr;	unsigned long flags;	a += nr >> 5;	mask = 1 << (nr & 0x1f);	save_and_cli(flags);	retval = (mask & *a) != 0;	*a &= ~mask;	restore_flags(flags);	return retval;}extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr){	int	mask, retval;	volatile unsigned int *a = (volatile unsigned int *) addr;	a += nr >> 5;	mask = 1 << (nr & 0x1f);	retval = (mask & *a) != 0;	*a &= ~mask;	return retval;}extern __inline__ int test_and_change_bit(int nr, volatile void * addr){	int	mask, retval;	volatile unsigned int *a = (volatile unsigned int *) addr;	unsigned long flags;	a += nr >> 5;	mask = 1 << (nr & 0x1f);	save_and_cli(flags);	retval = (mask & *a) != 0;	*a ^= mask;	restore_flags(flags);	return retval;}extern __inline__ int __test_and_change_bit(int nr, volatile void * addr){	int	mask, retval;	volatile unsigned int *a = (volatile unsigned int *) addr;	a += nr >> 5;	mask = 1 << (nr & 0x1f);	retval = (mask & *a) != 0;	*a ^= mask;	return retval;}/* * This routine doesn't need to be atomic. */extern __inline__ int __constant_test_bit(int nr, const volatile void * addr){	return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;}extern __inline__ int __test_bit(int nr, volatile void * addr){	int 	* a = (int *) addr;	int	mask;	a += nr >> 5;	mask = 1 << (nr & 0x1f);	return ((mask & *a) != 0);}#define test_bit(nr,addr) \(__builtin_constant_p(nr) ? \ __constant_test_bit((nr),(addr)) : \ __test_bit((nr),(addr)))#define find_first_zero_bit(addr, size) \        find_next_zero_bit((addr), (size), 0)extern __inline__ int find_next_zero_bit (void * addr, int size, int offset){	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);	unsigned long result = offset & ~31UL;	unsigned long tmp;	if (offset >= size)		return size;	size -= result;	offset &= 31UL;	if (offset) {		tmp = *(p++);		tmp |= ~0UL >> (32-offset);		if (size < 32)			goto found_first;		if (~tmp)			goto found_middle;		size -= 32;		result += 32;	}	while (size & ~31UL) {		if (~(tmp = *(p++)))			goto found_middle;		result += 32;		size -= 32;	}	if (!size)		return result;	tmp = *p;found_first:	tmp |= ~0UL >> size;found_middle:	return result + ffz(tmp);}#define ffs(x) generic_ffs(x)extern __inline__ int ext2_set_bit(int nr, volatile void * addr){	int		mask, retval;	unsigned long	flags;	volatile unsigned char	*ADDR = (unsigned char *) addr;	ADDR += nr >> 3;	mask = 1 << (nr & 0x07);	save_and_cli(flags);	retval = (mask & *ADDR) != 0;	*ADDR |= mask;	restore_flags(flags);	return retval;}extern __inline__ int ext2_clear_bit(int nr, volatile void * addr){	int		mask, retval;	unsigned long	flags;	volatile unsigned char	*ADDR = (unsigned char *) addr;	ADDR += nr >> 3;	mask = 1 << (nr & 0x07);	save_and_cli(flags);	retval = (mask & *ADDR) != 0;	*ADDR &= ~mask;	restore_flags(flags);	return retval;}extern __inline__ int ext2_test_bit(int nr, const volatile void * addr){	int			mask;	const volatile unsigned char	*ADDR = (const unsigned char *) addr;	ADDR += nr >> 3;	mask = 1 << (nr & 0x07);	return ((mask & *ADDR) != 0);}#define ext2_find_first_zero_bit(addr, size) \        ext2_find_next_zero_bit((addr), (size), 0)extern __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset){	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);	unsigned long result = offset & ~31UL;	unsigned long tmp;	if (offset >= size)		return size;	size -= result;	offset &= 31UL;	if(offset) {		/* We hold the little endian value in tmp, but then the		 * shift is illegal. So we could keep a big endian value		 * in tmp, like this:		 *		 * tmp = __swab32(*(p++));		 * tmp |= ~0UL >> (32-offset);		 *		 * but this would decrease preformance, so we change the		 * shift:		 */		tmp = *(p++);		tmp |= __swab32(~0UL >> (32-offset));		if(size < 32)			goto found_first;		if(~tmp)			goto found_middle;		size -= 32;		result += 32;	}	while(size & ~31UL) {		if(~(tmp = *(p++)))			goto found_middle;		result += 32;		size -= 32;	}	if(!size)		return result;	tmp = *p;found_first:	/* tmp is little endian, so we would have to swab the shift,	 * see above. But then we have to swab tmp below for ffz, so	 * we might as well do this here.	 */	return result + ffz(__swab32(tmp) | (~0UL << size));found_middle:	return result + ffz(__swab32(tmp));}/* Bitmap functions for the minix filesystem.  */#define minix_test_and_set_bit(nr,addr) ext2_test_and_set_bit(nr,addr)#define minix_set_bit(nr,addr) ext2_set_bit(nr,addr)#define minix_test_and_clear_bit(nr,addr) ext2_test_and_clear_bit(nr,addr)#define minix_test_bit(nr,addr) ext2_test_bit(nr,addr)#define minix_find_first_zero_bit(addr,size) ext2_find_first_zero_bit(addr,size)#endif /* __ARMEB__ *//* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */#define hweight32(x) generic_hweight32(x)#define hweight16(x) generic_hweight16(x)#define hweight8(x) generic_hweight8(x)#endif /* __KERNEL__ */#endif /* _ARM_BITOPS_H */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -