📄 bitops.h
字号:
/* * Copyright 1995, Russell King. * Various bits and pieces copyrights include: * Linus Torvalds (test_bit). * * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). * * Please note that the code in this file should never be included * from user space. Many of these are not implemented in assembler * since they would be too costly. Also, they require priviledged * instructions (which are not available from user mode) to ensure * that they are atomic. */#ifndef __ASM_ARM_BITOPS_H#define __ASM_ARM_BITOPS_H#ifdef __KERNEL__#ifndef __ARMEB__#define smp_mb__before_clear_bit() do { } while (0)#define smp_mb__after_clear_bit() do { } while (0)/* * Function prototypes to keep gcc -Wall happy. */extern void set_bit(int nr, volatile void * addr);static inline void __set_bit(int nr, volatile void *addr){ ((unsigned char *) addr)[nr >> 3] |= (1U << (nr & 7));}extern void clear_bit(int nr, volatile void * addr);static inline void __clear_bit(int nr, volatile void *addr){ ((unsigned char *) addr)[nr >> 3] &= ~(1U << (nr & 7));}extern void change_bit(int nr, volatile void * addr);static inline void __change_bit(int nr, volatile void *addr){ ((unsigned char *) addr)[nr >> 3] ^= (1U << (nr & 7));}extern int test_and_set_bit(int nr, volatile void * addr);static inline int __test_and_set_bit(int nr, volatile void *addr){ unsigned int mask = 1 << (nr & 7); unsigned int oldval; oldval = ((unsigned char *) addr)[nr >> 3]; ((unsigned char *) addr)[nr >> 3] = oldval | mask; return oldval & mask;}extern int test_and_clear_bit(int nr, volatile void * addr);static inline int __test_and_clear_bit(int nr, volatile void *addr){ unsigned int mask = 1 << (nr & 7); unsigned int oldval; oldval = ((unsigned char *) addr)[nr >> 3]; ((unsigned char *) addr)[nr >> 3] = oldval & ~mask; return oldval & mask;}extern int test_and_change_bit(int nr, volatile void * addr);static inline int __test_and_change_bit(int nr, volatile void *addr){ unsigned int mask = 1 << (nr & 7); unsigned int oldval; oldval = ((unsigned char *) addr)[nr >> 3]; ((unsigned char *) addr)[nr >> 3] = oldval ^ mask; return oldval & mask;}extern int find_first_zero_bit(void * addr, unsigned size);extern int find_next_zero_bit(void * addr, int size, int offset);/* * This routine doesn't need to be atomic. */extern __inline__ int test_bit(int nr, const void * addr){ return ((unsigned char *) addr)[nr >> 3] & (1U << (nr & 7));} /* * ffz = Find First Zero in word. Undefined if no zero exists, * so code should check against ~0UL first.. */extern __inline__ unsigned long ffz(unsigned long word){ int k; word = ~word; k = 31; if (word & 0x0000ffff) { k -= 16; word <<= 16; } if (word & 0x00ff0000) { k -= 8; word <<= 8; } if (word & 0x0f000000) { k -= 4; word <<= 4; } if (word & 0x30000000) { k -= 2; word <<= 2; } if (word & 0x40000000) { k -= 1; } return k;}/* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */#define ffs(x) generic_ffs(x)#define ext2_set_bit test_and_set_bit#define ext2_clear_bit test_and_clear_bit#define ext2_test_bit test_bit#define ext2_find_first_zero_bit find_first_zero_bit#define ext2_find_next_zero_bit find_next_zero_bit/* Bitmap functions for the minix filesystem. */#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)#define minix_set_bit(nr,addr) set_bit(nr,addr)#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)#define minix_test_bit(nr,addr) test_bit(nr,addr)#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)#else /******* __ARMEB__ *******//* * All these stolen from the m68knommu header, why ? because * they implement everything and it saves having to fix the * assembler routines in arch/armnommu/lib ;-) */#include <linux/config.h>#include <asm/byteorder.h> /* swab32 */#include <asm/system.h> /* save_flags */#ifndef save_and_cli#define save_and_cli(x) do { save_flags(flags); cli(); } while(0)#endifextern void set_bit(int nr, volatile void * addr);extern void __set_bit(int nr, volatile void * addr);extern void clear_bit(int nr, volatile void * addr);extern void change_bit(int nr, volatile void * addr);extern void __change_bit(int nr, volatile void * addr);extern int test_and_set_bit(int nr, volatile void * addr);extern int __test_and_set_bit(int nr, volatile void * addr);extern int test_and_clear_bit(int nr, volatile void * addr);extern int __test_and_clear_bit(int nr, volatile void * addr);extern int test_and_change_bit(int nr, volatile void * addr);extern int __test_and_change_bit(int nr, volatile void * addr);extern int __constant_test_bit(int nr, const volatile void * addr);extern int __test_bit(int nr, volatile void * addr);extern int find_first_zero_bit(void * addr, unsigned size);extern int find_next_zero_bit (void * addr, int size, int offset);/* * ffz = Find First Zero in word. Undefined if no zero exists, * so code should check against ~0UL first.. */extern __inline__ unsigned long ffz(unsigned long word){ unsigned long result = 0; while(word & 1) { result++; word >>= 1; } return result;}extern __inline__ void set_bit(int nr, volatile void * addr){ int * a = (int *) addr; int mask; unsigned long flags; a += nr >> 5; mask = 1 << (nr & 0x1f); save_flags(flags); cli(); *a |= mask; restore_flags(flags);}extern __inline__ void __set_bit(int nr, volatile void * addr){ int * a = (int *) addr; int mask; a += nr >> 5; mask = 1 << (nr & 0x1f); *a |= mask;}/* * clear_bit() doesn't provide any barrier for the compiler. */#define smp_mb__before_clear_bit() barrier()#define smp_mb__after_clear_bit() barrier()extern __inline__ void clear_bit(int nr, volatile void * addr){ int * a = (int *) addr; int mask; unsigned long flags; a += nr >> 5; mask = 1 << (nr & 0x1f); save_flags(flags); cli(); *a &= ~mask; restore_flags(flags);}extern __inline__ void change_bit(int nr, volatile void * addr){ int mask, flags; unsigned long *ADDR = (unsigned long *) addr; ADDR += nr >> 5; mask = 1 << (nr & 31); save_flags(flags); cli(); *ADDR ^= mask; restore_flags(flags);}extern __inline__ void __change_bit(int nr, volatile void * addr){ int mask; unsigned long *ADDR = (unsigned long *) addr; ADDR += nr >> 5; mask = 1 << (nr & 31); *ADDR ^= mask;}extern __inline__ int test_and_set_bit(int nr, volatile void * addr){ int mask, retval; volatile unsigned int *a = (volatile unsigned int *) addr; unsigned long flags; a += nr >> 5; mask = 1 << (nr & 0x1f); save_and_cli(flags); retval = (mask & *a) != 0; *a |= mask; restore_flags(flags); return retval;}extern __inline__ int __test_and_set_bit(int nr, volatile void * addr){ int mask, retval; volatile unsigned int *a = (volatile unsigned int *) addr; a += nr >> 5; mask = 1 << (nr & 0x1f); retval = (mask & *a) != 0; *a |= mask; return retval;}extern __inline__ int test_and_clear_bit(int nr, volatile void * addr){ int mask, retval; volatile unsigned int *a = (volatile unsigned int *) addr; unsigned long flags; a += nr >> 5; mask = 1 << (nr & 0x1f); save_and_cli(flags); retval = (mask & *a) != 0; *a &= ~mask; restore_flags(flags); return retval;}extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr){ int mask, retval; volatile unsigned int *a = (volatile unsigned int *) addr; a += nr >> 5; mask = 1 << (nr & 0x1f); retval = (mask & *a) != 0; *a &= ~mask; return retval;}extern __inline__ int test_and_change_bit(int nr, volatile void * addr){ int mask, retval; volatile unsigned int *a = (volatile unsigned int *) addr; unsigned long flags; a += nr >> 5; mask = 1 << (nr & 0x1f); save_and_cli(flags); retval = (mask & *a) != 0; *a ^= mask; restore_flags(flags); return retval;}extern __inline__ int __test_and_change_bit(int nr, volatile void * addr){ int mask, retval; volatile unsigned int *a = (volatile unsigned int *) addr; a += nr >> 5; mask = 1 << (nr & 0x1f); retval = (mask & *a) != 0; *a ^= mask; return retval;}/* * This routine doesn't need to be atomic. */extern __inline__ int __constant_test_bit(int nr, const volatile void * addr){ return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;}extern __inline__ int __test_bit(int nr, volatile void * addr){ int * a = (int *) addr; int mask; a += nr >> 5; mask = 1 << (nr & 0x1f); return ((mask & *a) != 0);}#define test_bit(nr,addr) \(__builtin_constant_p(nr) ? \ __constant_test_bit((nr),(addr)) : \ __test_bit((nr),(addr)))#define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0)extern __inline__ int find_next_zero_bit (void * addr, int size, int offset){ unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if (offset) { tmp = *(p++); tmp |= ~0UL >> (32-offset); if (size < 32) goto found_first; if (~tmp) goto found_middle; size -= 32; result += 32; } while (size & ~31UL) { if (~(tmp = *(p++))) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = *p;found_first: tmp |= ~0UL >> size;found_middle: return result + ffz(tmp);}#define ffs(x) generic_ffs(x)extern __inline__ int ext2_set_bit(int nr, volatile void * addr){ int mask, retval; unsigned long flags; volatile unsigned char *ADDR = (unsigned char *) addr; ADDR += nr >> 3; mask = 1 << (nr & 0x07); save_and_cli(flags); retval = (mask & *ADDR) != 0; *ADDR |= mask; restore_flags(flags); return retval;}extern __inline__ int ext2_clear_bit(int nr, volatile void * addr){ int mask, retval; unsigned long flags; volatile unsigned char *ADDR = (unsigned char *) addr; ADDR += nr >> 3; mask = 1 << (nr & 0x07); save_and_cli(flags); retval = (mask & *ADDR) != 0; *ADDR &= ~mask; restore_flags(flags); return retval;}extern __inline__ int ext2_test_bit(int nr, const volatile void * addr){ int mask; const volatile unsigned char *ADDR = (const unsigned char *) addr; ADDR += nr >> 3; mask = 1 << (nr & 0x07); return ((mask & *ADDR) != 0);}#define ext2_find_first_zero_bit(addr, size) \ ext2_find_next_zero_bit((addr), (size), 0)extern __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset){ unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if(offset) { /* We hold the little endian value in tmp, but then the * shift is illegal. So we could keep a big endian value * in tmp, like this: * * tmp = __swab32(*(p++)); * tmp |= ~0UL >> (32-offset); * * but this would decrease preformance, so we change the * shift: */ tmp = *(p++); tmp |= __swab32(~0UL >> (32-offset)); if(size < 32) goto found_first; if(~tmp) goto found_middle; size -= 32; result += 32; } while(size & ~31UL) { if(~(tmp = *(p++))) goto found_middle; result += 32; size -= 32; } if(!size) return result; tmp = *p;found_first: /* tmp is little endian, so we would have to swab the shift, * see above. But then we have to swab tmp below for ffz, so * we might as well do this here. */ return result + ffz(__swab32(tmp) | (~0UL << size));found_middle: return result + ffz(__swab32(tmp));}/* Bitmap functions for the minix filesystem. */#define minix_test_and_set_bit(nr,addr) ext2_test_and_set_bit(nr,addr)#define minix_set_bit(nr,addr) ext2_set_bit(nr,addr)#define minix_test_and_clear_bit(nr,addr) ext2_test_and_clear_bit(nr,addr)#define minix_test_bit(nr,addr) ext2_test_bit(nr,addr)#define minix_find_first_zero_bit(addr,size) ext2_find_first_zero_bit(addr,size)#endif /* __ARMEB__ *//* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */#define hweight32(x) generic_hweight32(x)#define hweight16(x) generic_hweight16(x)#define hweight8(x) generic_hweight8(x)#endif /* __KERNEL__ */#endif /* _ARM_BITOPS_H */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -