⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 limits

📁 arm_uclinux_tools用于安装linux的编译器
💻
📖 第 1 页 / 共 3 页
字号:
// The template and inlines for the -*- C++ -*- numeric_limits classes.// Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.//// This file is part of the GNU ISO C++ Library.  This library is free// software; you can redistribute it and/or modify it under the// terms of the GNU General Public License as published by the// Free Software Foundation; either version 2, or (at your option)// any later version.// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU General Public License for more details.// You should have received a copy of the GNU General Public License along// with this library; see the file COPYING.  If not, write to the Free// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,// USA.// As a special exception, you may use this file as part of a free software// library without restriction.  Specifically, if other files instantiate// templates or use macros or inline functions from this file, or you compile// this file and link it with other files to produce an executable, this// file does not by itself cause the resulting executable to be covered by// the GNU General Public License.  This exception does not however// invalidate any other reasons why the executable file might be covered by// the GNU General Public License.// Note: this is not a conforming implementation.// Written by Gabriel Dos Reis <gdr@codesourcery.com>//// ISO 14882:1998// 18.2.1///** @file limits *  This is a Standard C++ Library header.  You should @c #include this header *  in your programs, rather than any of the "st[dl]_*.h" implementation files. */#ifndef _GLIBCXX_NUMERIC_LIMITS#define _GLIBCXX_NUMERIC_LIMITS 1#pragma GCC system_header#include <bits/c++config.h>//// The numeric_limits<> traits document implementation-defined aspects// of fundamental arithmetic data types (integers and floating points).// From Standard C++ point of view, there are 13 such types://   * integers//         bool						        (1)//         char, signed char, unsigned char			(3)//         short, unsigned short				(2)//         int, unsigned					(2)//         long, unsigned long					(2)////   * floating points//         float						(1)//         double						(1)//         long double						(1)//// GNU C++ undertstands (where supported by the host C-library)//   * integer//         long long, unsigned long long			(2)//// which brings us to 15 fundamental arithmetic data types in GNU C++.////// Since a numeric_limits<> is a bit tricky to get right, we rely on// an interface composed of macros which should be defined in config/os// or config/cpu when they differ from the generic (read arbitrary)// definitions given here.//// These values can be overridden in the target configuration file.// The default values are appropriate for many 32-bit targets.// GCC only intrinsicly supports modulo integral types.  The only remaining// integral exceptional values is division by zero.  Only targets that do not// signal division by zero in some "hard to ignore" way should use false.#ifndef __glibcxx_integral_traps# define __glibcxx_integral_traps true#endif// float//// Default values.  Should be overriden in configuration files if necessary.#ifndef __glibcxx_float_has_denorm_loss#  define __glibcxx_float_has_denorm_loss false#endif#ifndef __glibcxx_float_traps#  define __glibcxx_float_traps false#endif#ifndef __glibcxx_float_tinyness_before#  define __glibcxx_float_tinyness_before false#endif// double// Default values.  Should be overriden in configuration files if necessary.#ifndef __glibcxx_double_has_denorm_loss#  define __glibcxx_double_has_denorm_loss false#endif#ifndef __glibcxx_double_traps#  define __glibcxx_double_traps false#endif#ifndef __glibcxx_double_tinyness_before#  define __glibcxx_double_tinyness_before false#endif// long double// Default values.  Should be overriden in configuration files if necessary.#ifndef __glibcxx_long_double_has_denorm_loss#  define __glibcxx_long_double_has_denorm_loss false#endif#ifndef __glibcxx_long_double_traps#  define __glibcxx_long_double_traps false#endif#ifndef __glibcxx_long_double_tinyness_before#  define __glibcxx_long_double_tinyness_before false#endif// You should not need to define any macros below this point.#define __glibcxx_signed(T)	((T)(-1) < 0)#define __glibcxx_min(T) \  (__glibcxx_signed (T) ? (T)1 << __glibcxx_digits (T) : (T)0)#define __glibcxx_max(T) \  (__glibcxx_signed (T) ? ((T)1 << __glibcxx_digits (T)) - 1 : ~(T)0)#define __glibcxx_digits(T) \  (sizeof(T) * __CHAR_BIT__ - __glibcxx_signed (T))// The fraction 643/2136 approximates log10(2) to 7 significant digits.#define __glibcxx_digits10(T) \  (__glibcxx_digits (T) * 643 / 2136)namespace std{  /**   *  @brief Describes the rounding style for floating-point types.   *   *  This is used in the std::numeric_limits class.  */  enum float_round_style  {    round_indeterminate       = -1,    ///< Self-explanatory.    round_toward_zero         = 0,     ///< Self-explanatory.    round_to_nearest          = 1,     ///< To the nearest representable value.    round_toward_infinity     = 2,     ///< Self-explanatory.    round_toward_neg_infinity = 3      ///< Self-explanatory.  };  /**   *  @brief Describes the denormalization for floating-point types.   *   *  These values represent the presence or absence of a variable number   *  of exponent bits.  This type is used in the std::numeric_limits class.  */  enum float_denorm_style  {    /// Indeterminate at compile time whether denormalized values are allowed.    denorm_indeterminate = -1,    /// The type does not allow denormalized values.    denorm_absent        = 0,    /// The type allows denormalized values.    denorm_present       = 1  };  /**   *  @brief Part of std::numeric_limits.   *   *  The @c static @c const members are usable as integral constant   *  expressions.   *   *  @note This is a seperate class for purposes of efficiency; you   *        should only access these members as part of an instantiation   *        of the std::numeric_limits class.  */  struct __numeric_limits_base  {    /** This will be true for all fundamental types (which have        specializations), and false for everything else.  */    static const bool is_specialized = false;    /** The number of @c radix digits that be represented without change:  for        integer types, the number of non-sign bits in the mantissa; for        floating types, the number of @c radix digits in the mantissa.  */    static const int digits = 0;    /** The number of base 10 digits that can be represented without change. */    static const int digits10 = 0;    /** True if the type is signed.  */    static const bool is_signed = false;    /** True if the type is integer.     *  @if maint     *  Is this supposed to be "if the type is integral"?     *  @endif    */    static const bool is_integer = false;    /** True if the type uses an exact representation.  "All integer types are        exact, but not all exact types are integer.  For example, rational and        fixed-exponent representations are exact but not integer."        [18.2.1.2]/15  */    static const bool is_exact = false;    /** For integer types, specifies the base of the representation.  For        floating types, specifies the base of the exponent representation.  */    static const int radix = 0;    /** The minimum negative integer such that @c radix raised to the power of        (one less than that integer) is a normalized floating point number.  */    static const int min_exponent = 0;    /** The minimum negative integer such that 10 raised to that power is in        the range of normalized floating point numbers.  */    static const int min_exponent10 = 0;    /** The maximum positive integer such that @c radix raised to the power of        (one less than that integer) is a representable finite floating point	number.  */    static const int max_exponent = 0;    /** The maximum positive integer such that 10 raised to that power is in        the range of representable finite floating point numbers.  */    static const int max_exponent10 = 0;    /** True if the type has a representation for positive infinity.  */    static const bool has_infinity = false;    /** True if the type has a representation for a quiet (non-signaling)        "Not a Number."  */    static const bool has_quiet_NaN = false;    /** True if the type has a representation for a signaling        "Not a Number."  */    static const bool has_signaling_NaN = false;    /** See std::float_denorm_style for more information.  */    static const float_denorm_style has_denorm = denorm_absent;    /** "True if loss of accuracy is detected as a denormalization loss,        rather than as an inexact result." [18.2.1.2]/42  */    static const bool has_denorm_loss = false;    /** True if-and-only-if the type adheres to the IEC 559 standard, also        known as IEEE 754.  (Only makes sense for floating point types.)  */    static const bool is_iec559 = false;    /** "True if the set of values representable by the type is finite.   All        built-in types are bounded, this member would be false for arbitrary	precision types." [18.2.1.2]/54  */    static const bool is_bounded = false;    /** True if the type is @e modulo, that is, if it is possible to add two        positive numbers and have a result that wraps around to a third number        that is less.  Typically false for floating types, true for unsigned        integers, and true for signed integers.  */    static const bool is_modulo = false;    /** True if trapping is implemented for this type.  */    static const bool traps = false;    /** True if tinyness is detected before rounding.  (see IEC 559)  */    static const bool tinyness_before = false;    /** See std::float_round_style for more information.  This is only        meaningful for floating types; integer types will all be	round_toward_zero.  */    static const float_round_style round_style = round_toward_zero;  };  /**   *  @brief Properties of fundamental types.   *   *  This class allows a program to obtain information about the   *  representation of a fundamental type on a given platform.  For   *  non-fundamental types, the functions will return 0 and the data   *  members will all be @c false.   *   *  @if maint   *  _GLIBCXX_RESOLVE_LIB_DEFECTS:  DRs 201 and 184 (hi Gaby!) are   *  noted, but not incorporated in this documented (yet).   *  @endif  */  template<typename _Tp>    struct numeric_limits : public __numeric_limits_base    {      /** The minimum finite value, or for floating types with          denormalization, the minimum positive normalized value.  */      static _Tp min() throw() { return static_cast<_Tp>(0); }      /** The maximum finite value.  */      static _Tp max() throw() { return static_cast<_Tp>(0); }      /** The @e machine @e epsilon:  the difference between 1 and the least          value greater than 1 that is representable.  */      static _Tp epsilon() throw() { return static_cast<_Tp>(0); }      /** The maximum rounding error measurement (see LIA-1).  */      static _Tp round_error() throw() { return static_cast<_Tp>(0); }      /** The representation of positive infinity, if @c has_infinity.  */      static _Tp infinity() throw()  { return static_cast<_Tp>(0); }      /** The representation of a quiet "Not a Number," if @c has_quiet_NaN. */      static _Tp quiet_NaN() throw() { return static_cast<_Tp>(0); }      /** The representation of a signaling "Not a Number," if          @c has_signaling_NaN. */      static _Tp signaling_NaN() throw() { return static_cast<_Tp>(0); }      /** The minimum positive denormalized value.  For types where          @c has_denorm is false, this is the minimum positive normalized	  value.  */      static _Tp denorm_min() throw() { return static_cast<_Tp>(0); }    };  // Now there follow 15 explicit specializations.  Yes, 15.  Make sure  // you get the count right.  template<>    struct numeric_limits<bool>    {      static const bool is_specialized = true;      static bool min() throw()      { return false; }      static bool max() throw()      { return true; }      static const int digits = 1;      static const int digits10 = 0;      static const bool is_signed = false;      static const bool is_integer = true;      static const bool is_exact = true;      static const int radix = 2;      static bool epsilon() throw()      { return false; }      static bool round_error() throw()      { return false; }      static const int min_exponent = 0;      static const int min_exponent10 = 0;      static const int max_exponent = 0;      static const int max_exponent10 = 0;      static const bool has_infinity = false;      static const bool has_quiet_NaN = false;      static const bool has_signaling_NaN = false;      static const float_denorm_style has_denorm = denorm_absent;      static const bool has_denorm_loss = false;      static bool infinity() throw()      { return false; }      static bool quiet_NaN() throw()      { return false; }      static bool signaling_NaN() throw()      { return false; }      static bool denorm_min() throw()      { return false; }      static const bool is_iec559 = false;      static const bool is_bounded = true;      static const bool is_modulo = false;      // It is not clear what it means for a boolean type to trap.      // This is a DR on the LWG issue list.  Here, I use integer      // promotion semantics.      static const bool traps = __glibcxx_integral_traps;      static const bool tinyness_before = false;      static const float_round_style round_style = round_toward_zero;    };  template<>    struct numeric_limits<char>    {      static const bool is_specialized = true;      static char min() throw()      { return __glibcxx_min(char); }      static char max() throw()      { return __glibcxx_max(char); }      static const int digits = __glibcxx_digits (char);      static const int digits10 = __glibcxx_digits10 (char);      static const bool is_signed = __glibcxx_signed (char);      static const bool is_integer = true;      static const bool is_exact = true;      static const int radix = 2;      static char epsilon() throw()

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -