📄 wtls_manual.tex
字号:
A complete list of the \matlab\ code is given in Appendix~\ref{app}. It could be consulted for the implementation details.\section{Overview of commands}\la{s2}The package has three main groups of functions: transformations, misfit computations, and approximations. The transformation functions convert a given representation of a model to an equivalent one. The considered representations are image, kernel, and input/output, so that there are in total 6 transformation functions among them, see Figure~\ref{f1}. In addition a kernel or an image representation might not be minimal, so that functions that convert a given kernel or image representation to a minimal one are added. The transformation functions are summarized in Table~\ref{t3}.\begin{figure}[!ht]$$\xymatrix@C=1.75cm@R=2cm@M=2mm{ \B=\ker(R) \ar@{<->}[rr]^{RP=0} \ar@<1mm>[rd]^{X^{\top}=-R_{\tout}^{-1}R_{\tin}} && \B=\colspan(P)\ar@<-1mm>[ld]_{X^{\top}=P_{\tout}P_{\tin}^{-1}} \\ &\B=\B_\io(X)\ar@<1mm>[ul]^{R = [ X^{\top} \ -I ] } \ar@<-1mm>[ur]_{P^{\top} = [ I \ \ X ] } }$$\caption{Transformations among kernel, image, and input/output representation of a model $\B\in\calL_{\ttm,0}^\ttd$.} \la{f1}\end{figure}\begin{table}[htb!]\centering\caption{Transformation functions}\la{t3}\vskip.15cm\begin{tabular}{|l|cl|}\hlineFunctions & \multicolumn{2}{|c|}{Description}\\\hline{\tt x2r} & $X\mapsto R$ & from input/output to kernel representation\\{\tt x2p} & $X\mapsto P$ & from input/output to image representation\\{\tt r2p} & $R\mapsto P$ & from kernel to image representation\\{\tt p2r} & $P\mapsto R$ & from image to kernel representation\\{\tt r2x} & $R\mapsto X$ & from kernel to input/output representation\\{\tt p2x} & $P\mapsto X$ & from image to input/output representation\\{\tt minr} & $R\mapsto R_{\min}$ & minimal kernel representation\\{\tt minp} & $P\mapsto P_{\min}$ & minimal image representation\\\hline\end{tabular}\end{table}The misfit computation functions are used for validation: they allow the user to verify how well a given model fits given data in terms of a certain misfit function. Since the model can be specified by one of the three alternative representations---kernel, image, or input/output---all misfit functions have three versions. The following naming convention is adopted: misfit computation functions begin with {\tt m} (for misfit), followed by the name of the approximation problem (which identifies the type of misfit to be computed), followed by a letter, indicating the model representation: {\tt r} for kernel, {\tt p} for image, and {\tt x} for input/output. Instead of a model~$\B$ an approximating matrix~$\hat D\in\R^{\ttd\times N}$ can be used for the misfit computation. In this latter case the last letter of the function name is {\tt dh}.The considered misfit functions are TLS, GTLS, GTLS2, WTLS, and FWTLS. The element-wise versions of the GTLS, GTLS2, and WTLS misfits are specified by the size of the given weight matrices: if vectors are given in {\tt mgtls\{r,p,x,dh\}} and {\tt mgtls2\{r,p,x,dh\}} instead of square weight matrices, then the EWGTLS and EWGTLS2 misfits are computed instead of the GTLS and GTLS2 ones. Similarly, if an $\ttd\times N$ matrix is given instead of an $\ttd\times\ttd\times N$ tensor in {\tt mwtls\{r,p,x,dh\}}, then the EWTLS misfit is computed instead of the WTLS one. The general FWTLS misfit is computed by the functions {\tt mwtls\{r,p,x,dh\}} if the weight matrix is of size $\ttd N\times\ttd N$. The misfit computation functions are summarized in Table~\ref{t4}.The approximation functions compute a WTLS approximation of the data. The special WTLS problems are called by special functions that are more efficient, see Table~\ref{t5}. As in the misfit computation, the element-wise versions of the functions are recognized by the dimension of the weight matrices. The function {\tt wtls} uses the quasi-Newton optimization algorithm that seems to outperform the alternatives described in Section~\ref{s1}. The alternative methods can be called by the corresponding functions, see Table~\ref{t6}.\begin{table}[htb!] \begin{minipage}{.65\textwidth}\centering\caption{Misfit computation functions}\la{t4}\vskip.15cm\begin{tabular}{|llll|l|}\hline\multicolumn{4}{|c|}{Function} & \multicolumn{1}{|c|}{Description}\\\hline{\tt mtlsr} & {\tt mtlsp} & {\tt mtlsx} & {\tt mtlsdh} & TLS misfit \\{\tt mgtlsr} & {\tt mgtlsp} & {\tt mgtlsx} & {\tt mgtlsdh} & GTLS misfit \\{\tt mgtls2r} & {\tt mgtls2p} & {\tt mgtls2x} & {\tt mgtls2dh} & GTLS2 misfit\\{\tt mwtlsr} & {\tt mwtlsp} & {\tt mwtlsx} & {\tt mwtlsdh} & WTLS misfit \\\hline\end{tabular}\end{minipage}\begin{minipage}{.35\textwidth}\centering\caption{Approximation functions}\la{t5}\vskip.15cm\begin{tabular}{|l|l|}\hlineFunction & \multicolumn{1}{|c|}{Description}\\\hline{\tt tls} & TLS approximation\\{\tt gtls} & GTLS approximation\\{\tt gtls2} & GTLS2 approximation\\{\tt wtls} & WTLS approximation\\\hline\end{tabular}\end{minipage}\end{table}\begin{table}[htb!]\centering\caption{Auxiliary functions}\la{t6}\vskip.15cm\begin{tabular}{|l|l|}\hlineFunction & \multicolumn{1}{|c|}{Description}\\\hline{\tt wtlsini} & initial approximation for the WTLS approximation functions\\{\tt wtlsap} & WTLS approximation by alternating projections\\{\tt wtlsopt} & WTLS approximation by classical optimization methods\\{\tt qncostderiv} & cost function and gradient for the quasi Newton methods\\{\tt lmcostderiv} & cost function and Jacobian for the Levenberg--Marquardt method\\{\tt wtlspr} & WTLS approximation by the algorithm of~\cite{MRPKV02}\\\hline\end{tabular}\end{table}%\section{Examples}\la{s3}\section*{Acknowledgments}{\small Dr. Sabine Van Huffel is a full professor at the Katholieke Universiteit Leuven, Belgium. Research supported byResearch Council KUL: GOA-Mefisto 666, IDO /99/003 and /02/009 (Predictive computer models for medical classification problems using patient data and expert knowledge), several PhD/postdoc \& fellow grants; Flemish Government: o FWO: PhD/postdoc grants, projects, G.0078.01 (structured matrices), G.0407.02 (support vector machines), G.0269.02 (magnetic resonance spectroscopic imaging), G.0270.02 (nonlinear Lp approximation), research communities (ICCoS, ANMMM); o IWT: PhD Grants; Belgian Federal Science Policy Office IUAP P5/22 (`Dynamical Systems and Control: Computation, Identification and Modelling'); EU: PDT-COIL, BIOPATTERN, ETUMOUR.}\bibliographystyle{alpha}\bibliography{bib,mypapers}\twocolumn\appendix\section{Source code}\la{app}\subsection*{Transformations}{\scriptsize\funinput{x2r.m}\funinput{x2p.m}\funinput{r2p.m}\funinput{p2r.m}\funinput{r2x.m}\funinput{p2x.m}\funinput{minr.m}\funinput{minp.m}}\subsection*{TLS and GTLS misfit computation}{\scriptsize\funinput{mtlsr.m}\funinput{mtlsp.m}\funinput{mtlsx.m}\funinput{mtlsdh.m}\funinput{mgtlsr.m}\funinput{mgtlsp.m}\funinput{mgtlsx.m}\funinput{mgtlsdh.m}\funinput{mgtls2r.m}\funinput{mgtls2p.m}\funinput{mgtls2x.m}\funinput{mgtls2dh.m}}\subsection*{TLS and GTLS approximation}{\scriptsize\funinput{tls.m}\funinput{gtls.m}\funinput{gtls2.m}}\subsection*{WTLS misfit computation}{\scriptsize\funinput{mwtlsr.m}\funinput{mwtlsp.m}\funinput{mwtlsx.m}\funinput{mwtlsdh.m}}\subsection*{WTLS approximation}{\scriptsize\funinput{wtlsini.m}\funinput{wtlsap.m}\funinput{wtlsopt.m}\funinput{qncostderiv.m}\funinput{lmcostderiv.m}\funinput{wtlspr.m}}\end{document}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -