📄 rijndael.c
字号:
/* Rijndael Block Cipher - rijndael.c Written by Mike Scott 21st April 1999 mike@compapp.dcu.ie Permission for free direct or derivative use is granted subject to compliance with any conditions that the originators of the algorithm place on its exploitation. */#include <stdio.h>#include <string.h>#define u8 unsigned char /* 8 bits */#define u32 unsigned long /* 32 bits */#define u64 unsigned long long/* rotates x one bit to the left */#define ROTL(x) (((x)>>7)|((x)<<1))/* Rotates 32-bit word left by 1, 2 or 3 byte */#define ROTL8(x) (((x)<<8)|((x)>>24))#define ROTL16(x) (((x)<<16)|((x)>>16))#define ROTL24(x) (((x)<<24)|((x)>>8))/* Fixed Data */static u8 InCo[4]={0xB,0xD,0x9,0xE}; /* Inverse Coefficients */static u8 fbsub[256];static u8 rbsub[256];static u8 ptab[256],ltab[256];static u32 ftable[256];static u32 rtable[256];static u32 rco[30];/* Parameter-dependent data */int Nk,Nb,Nr;u8 fi[24],ri[24];u32 fkey[120];u32 rkey[120];static u32 pack(u8 *b){ /* pack bytes into a 32-bit Word */ return ((u32)b[3]<<24)|((u32)b[2]<<16)|((u32)b[1]<<8)|(u32)b[0];}static void unpack(u32 a,u8 *b){ /* unpack bytes from a word */ b[0]=(u8)a; b[1]=(u8)(a>>8); b[2]=(u8)(a>>16); b[3]=(u8)(a>>24);}static u8 xtime(u8 a){ u8 b; if (a&0x80) b=0x1B; else b=0; a<<=1; a^=b; return a;}static u8 bmul(u8 x,u8 y){ /* x.y= AntiLog(Log(x) + Log(y)) */ if (x && y) return ptab[(ltab[x]+ltab[y])%255]; else return 0;}static u32 SubByte(u32 a){ u8 b[4]; unpack(a,b); b[0]=fbsub[b[0]]; b[1]=fbsub[b[1]]; b[2]=fbsub[b[2]]; b[3]=fbsub[b[3]]; return pack(b); }static u8 product(u32 x,u32 y){ /* dot product of two 4-byte arrays */ u8 xb[4],yb[4]; unpack(x,xb); unpack(y,yb); return bmul(xb[0],yb[0])^bmul(xb[1],yb[1])^bmul(xb[2],yb[2])^bmul(xb[3],yb[3]);}static u32 InvMixCol(u32 x){ /* matrix Multiplication */ u32 y,m; u8 b[4]; m=pack(InCo); b[3]=product(m,x); m=ROTL24(m); b[2]=product(m,x); m=ROTL24(m); b[1]=product(m,x); m=ROTL24(m); b[0]=product(m,x); y=pack(b); return y;}u8 ByteSub(u8 x){ u8 y=ptab[255-ltab[x]]; /* multiplicative inverse */ x=y; x=ROTL(x); y^=x; x=ROTL(x); y^=x; x=ROTL(x); y^=x; x=ROTL(x); y^=x; y^=0x63; return y;}void gentables(void){ /* generate tables */ int i; u8 y,b[4]; /* use 3 as primitive root to generate power and log tables */ ltab[0]=0; ptab[0]=1; ltab[1]=0; ptab[1]=3; ltab[3]=1; for (i=2;i<256;i++) { ptab[i]=ptab[i-1]^xtime(ptab[i-1]); ltab[ptab[i]]=i; } /* affine transformation:- each bit is xored with itself shifted one bit */ fbsub[0]=0x63; rbsub[0x63]=0; for (i=1;i<256;i++) { y=ByteSub((u8)i); fbsub[i]=y; rbsub[y]=i; } for (i=0,y=1;i<30;i++) { rco[i]=y; y=xtime(y); } /* calculate forward and reverse tables */ for (i=0;i<256;i++) { y=fbsub[i]; b[3]=y^xtime(y); b[2]=y; b[1]=y; b[0]=xtime(y); ftable[i]=pack(b); y=rbsub[i]; b[3]=bmul(InCo[0],y); b[2]=bmul(InCo[1],y); b[1]=bmul(InCo[2],y); b[0]=bmul(InCo[3],y); rtable[i]=pack(b); }}void gkey(int nb,int nk,char *key){ /* blocksize=32*nb bits. Key=32*nk bits */ /* currently nb,bk = 4, 6 or 8 */ /* key comes as 4*Nk bytes */ /* Key Scheduler. Create expanded encryption key */ int i,j,k,m,N; int C1,C2,C3; u32 CipherKey[8]; Nb=nb; Nk=nk; /* Nr is number of rounds */ if (Nb>=Nk) Nr=6+Nb; else Nr=6+Nk; C1=1; if (Nb<8) { C2=2; C3=3; } else { C2=3; C3=4; } /* pre-calculate forward and reverse increments */ for (m=j=0;j<nb;j++,m+=3) { fi[m]=(j+C1)%nb; fi[m+1]=(j+C2)%nb; fi[m+2]=(j+C3)%nb; ri[m]=(nb+j-C1)%nb; ri[m+1]=(nb+j-C2)%nb; ri[m+2]=(nb+j-C3)%nb; } N=Nb*(Nr+1); for (i=j=0;i<Nk;i++,j+=4) { CipherKey[i]=pack((u8 *)&key[j]); } for (i=0;i<Nk;i++) fkey[i]=CipherKey[i]; for (j=Nk,k=0;j<N;j+=Nk,k++) { fkey[j]=fkey[j-Nk]^SubByte(ROTL24(fkey[j-1]))^rco[k]; if (Nk<=6) { for (i=1;i<Nk && (i+j)<N;i++) fkey[i+j]=fkey[i+j-Nk]^fkey[i+j-1]; } else { for (i=1;i<4 &&(i+j)<N;i++) fkey[i+j]=fkey[i+j-Nk]^fkey[i+j-1]; if ((j+4)<N) fkey[j+4]=fkey[j+4-Nk]^SubByte(fkey[j+3]); for (i=5;i<Nk && (i+j)<N;i++) fkey[i+j]=fkey[i+j-Nk]^fkey[i+j-1]; } } /* now for the expanded decrypt key in reverse order */ for (j=0;j<Nb;j++) rkey[j+N-Nb]=fkey[j]; for (i=Nb;i<N-Nb;i+=Nb) { k=N-Nb-i; for (j=0;j<Nb;j++) rkey[k+j]=InvMixCol(fkey[i+j]); } for (j=N-Nb;j<N;j++) rkey[j-N+Nb]=fkey[j];}/* There is an obvious time/space trade-off possible here. * * Instead of just one ftable[], I could have 4, the other * * 3 pre-rotated to save the ROTL8, ROTL16 and ROTL24 overhead */ void encrypt(char *buff){ int i,j,k,m; u32 a[8],b[8],*x,*y,*t; for (i=j=0;i<Nb;i++,j+=4) { a[i]=pack((u8 *)&buff[j]); a[i]^=fkey[i]; } k=Nb; x=a; y=b;/* State alternates between a and b */ for (i=1;i<Nr;i++) { /* Nr is number of rounds. May be odd. *//* if Nb is fixed - unroll this next loop and hard-code in the values of fi[] */ for (m=j=0;j<Nb;j++,m+=3) { /* deal with each 32-bit element of the State */ /* This is the time-critical bit */ y[j]=fkey[k++]^ftable[(u8)x[j]]^ ROTL8(ftable[(u8)(x[fi[m]]>>8)])^ ROTL16(ftable[(u8)(x[fi[m+1]]>>16)])^ ROTL24(ftable[x[fi[m+2]]>>24]); } t=x; x=y; y=t; /* swap pointers */ }/* Last Round - unroll if possible */ for (m=j=0;j<Nb;j++,m+=3) { y[j]=fkey[k++]^(u32)fbsub[(u8)x[j]]^ ROTL8((u32)fbsub[(u8)(x[fi[m]]>>8)])^ ROTL16((u32)fbsub[(u8)(x[fi[m+1]]>>16)])^ ROTL24((u32)fbsub[x[fi[m+2]]>>24]); } for (i=j=0;i<Nb;i++,j+=4) { unpack(y[i],(u8 *)&buff[j]); x[i]=y[i]=0; /* clean up stack */ } return;}void decrypt(char *buff){ int i,j,k,m; u32 a[8],b[8],*x,*y,*t; for (i=j=0;i<Nb;i++,j+=4) { a[i]=pack((u8 *)&buff[j]); a[i]^=rkey[i]; } k=Nb; x=a; y=b;/* State alternates between a and b */ for (i=1;i<Nr;i++) { /* Nr is number of rounds. May be odd. *//* if Nb is fixed - unroll this next loop and hard-code in the values of ri[] */ for (m=j=0;j<Nb;j++,m+=3) { /* This is the time-critical bit */ y[j]=rkey[k++]^rtable[(u8)x[j]]^ ROTL8(rtable[(u8)(x[ri[m]]>>8)])^ ROTL16(rtable[(u8)(x[ri[m+1]]>>16)])^ ROTL24(rtable[x[ri[m+2]]>>24]); } t=x; x=y; y=t; /* swap pointers */ }/* Last Round - unroll if possible */ for (m=j=0;j<Nb;j++,m+=3) { y[j]=rkey[k++]^(u32)rbsub[(u8)x[j]]^ ROTL8((u32)rbsub[(u8)(x[ri[m]]>>8)])^ ROTL16((u32)rbsub[(u8)(x[ri[m+1]]>>16)])^ ROTL24((u32)rbsub[x[ri[m+2]]>>24]); } for (i=j=0;i<Nb;i++,j+=4) { unpack(y[i],(u8 *)&buff[j]); x[i]=y[i]=0; /* clean up stack */ } return;}void aes_set_key(u8 *key) { gentables(); gkey(4, 4, key);}// CBC mode decryptionvoid aes_decrypt(u8 *iv, u8 *inbuf, u8 *outbuf, unsigned long long len) { u8 block[16]; unsigned int blockno = 0, i; // debug_printf("aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len); for (blockno = 0; blockno <= (len / sizeof(block)); blockno++) { unsigned int fraction; if (blockno == (len / sizeof(block))) { // last block fraction = len % sizeof(block); if (fraction == 0) break; memset(block, 0, sizeof(block)); } else fraction = 16; // debug_printf("block %d: fraction = %d\n", blockno, fraction); memcpy(block, inbuf + blockno * sizeof(block), fraction); decrypt(block); u8 *ctext_ptr; if (blockno == 0) ctext_ptr = iv; else ctext_ptr = inbuf + (blockno-1) * sizeof(block); for(i=0; i < fraction; i++) outbuf[blockno * sizeof(block) + i] = ctext_ptr[i] ^ block[i]; // debug_printf("Block %d output: ", blockno); // hexdump(outbuf + blockno*sizeof(block), 16); }}// CBC mode encryption void aes_encrypt(u8 *iv, u8 *inbuf, u8 *outbuf, unsigned long long len) { u8 block[16]; unsigned int blockno = 0, i; // debug_printf("aes_decrypt(%p, %p, %p, %lld)\n", iv, inbuf, outbuf, len); for (blockno = 0; blockno <= (len / sizeof(block)); blockno++) { unsigned int fraction; if (blockno == (len / sizeof(block))) { // last block fraction = len % sizeof(block); if (fraction == 0) break; memset(block, 0, sizeof(block)); } else fraction = 16; // debug_printf("block %d: fraction = %d\n", blockno, fraction); memcpy(block, inbuf + blockno * sizeof(block), fraction); for(i=0; i < fraction; i++) block[i] = inbuf[blockno * sizeof(block) + i] ^ iv[i]; encrypt(block); memcpy(iv, block, sizeof(block)); memcpy(outbuf + blockno * sizeof(block), block, sizeof(block)); // debug_printf("Block %d output: ", blockno); // hexdump(outbuf + blockno*sizeof(block), 16); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -