⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 objlinq.m

📁 遗传算法 其中包含几十个m文件 内容丰富
💻 M
字号:
% OBJLINQ.M      (OBJective function for LINear Quadratic problem)
%
% This function implements the discret LINEAR-QUADRATIC PROBLEM.
%
% Syntax:  ObjVal = objlinq(Chrom,rtn_type)
%
% Input parameters:
%    Chrom     - Matrix containing the chromosomes of the current
%                population. Each row corresponds to one individual's
%                string representation.
%                if Chrom == [], then special values will be returned
%    rtn_type  - if Chrom == [] and
%                rtn_type == 1 (or []) return boundaries
%                rtn_type == 2 return title
%                rtn_type == 3 return value of global minimum
%
% Output parameters:
%    ObjVal    - Column vector containing the objective values of the
%                individuals in the current population.
%                if called with Chrom == [], then ObjVal contains
%                rtn_type == 1, matrix with the boundaries of the function
%                rtn_type == 2, text for the title of the graphic output
%                rtn_type == 3, value of global minimum
%                
%
% Author:     Hartmut Pohlheim
% History:    18.02.94     file created (copy of valfun7.m)
%             01.03.94     name changed in obj*
%             14.01.03     updated for MATLAB v6 by Alex Shenfield

function ObjVal = objlinq(Chrom,rtn_type);

% Dimension of objective function
   Dim = 45;

% values from MICHALEWICZ
   x0 = 100;              % start of X
   var = 1;               % 1 - 10 possible
   Para = [   1    1    1    1    1    16180.3399;
             10    1    1    1    1   109160.7978;
           1000    1    1    1    1 10009990.0200;
              1   10    1    1    1    37015.6212;
              1 1000    1    1    1   287569.3725;
              1    1    0    1    1    16180.3399;
              1    1 1000    1    1    16180.3399;
              1    1    1 0.01    1    10000.5000;
              1    1    1    1 0.01   431004.0987;
              1    1    1    1  100    10000.9999];
   s = Para(var,1); r = Para(var,2); q = Para(var,3);
   a = Para(var,4); b = Para(var,5); GlobalMinimum = Para(var,6);

% Compute population parameters
   [Nind,Nvar] = size(Chrom);

% Check size of Chrom and do the appropriate thing
   % if Chrom is [], then define size of boundary-matrix and values
   if Nind == 0
      % return text of title for graphic output
      if rtn_type == 2
         ObjVal = ['Linear-quadratic problem (dis)-' int2str(Dim)];
      % return value of global minimum
      elseif rtn_type == 3
         ObjVal = GlobalMinimum;
      % define size of boundary-matrix and values
      else   
         % lower and upper bound, identical for all n variables        
         ObjVal1 = [-100 -70 -50; 20 20 20];
         ObjVal = [ObjVal1 rep([-30;20],[1 Dim-3])];
      end
   % if Dim variables, compute values of function
   elseif Nvar == Dim
      ObjVal = zeros(Nind,1);
      X = zeros(Nind,Nvar+1);
      X(:,1) = rep(x0,[Nind 1]);
      for irun = 1:Nvar,
         X(:,irun+1) = a*X(:,irun) + b*Chrom(:,irun);
      end
      ObjVal = q * X(:,Nvar+1).^2 + sum((s * X(:,1:Nvar).^2 + r * Chrom.^2)')';
   % otherwise error, wrong format of Chrom
   else
      error('size of matrix Chrom is not correct for function evaluation');
   end   


% End of function

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -