📄 dualgeneralfeaturestest2.m
字号:
%A script to improve the efficiency of dualGeneralFeatures
clear;
rand('state',22);
numExamples = 2000;
numFeatures = 500;
numLabels = 20;
tol = 10^-5;
X = rand(numExamples, numFeatures);
Y = sign(rand(numExamples, numLabels)-0.5);
X = centerData(X);
X = normalise(X);
d = data;
d = addDataField(d, 'X', X, 'examples');
d = addDataField(d, 'Y', Y, 'labels');
[trainData, testData] = splitData2(d, 2/3);
T = 10;
params.dualFeatureDirection = 'dualMaxCovariance';
params.iterations = T;
params.X.kernel = getDefaultLinearKernel;
params.normalise = 1;
[subspaceInfo, trainInfo] = dualGeneralFeaturesTrain(trainData, params);
[testInfo, projectionInfo] = dualGeneralFeaturesProject(trainData, testData, subspaceInfo, params);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -