📄 dualgeneralfeatures.m.svn-base
字号:
function [newTrainX, newTestX, subspaceInfo] = dualGeneralFeatures(trainX, trainY, testX, params)
%Compute the dual general features, based on the General Feature Extraction Framework,
%on a set of training examples and labels and compute corresponding examples
%projected onto the directions specified by the featureDirection function. A test
%matrix of examples can also be supplied for the subspace projection.
%
% inputs
% trainK is an (l x k) kernel matrix of training data
% trainY is (l x m) containing the corresponding output vectors
% testK is an (l x l2) kernel matrix between training and test examples
% T gives the number of iterations to be performed
% featureDirection is a string specifying a function which computes a
% projection direction on centered matrices trainX and trainY at each
% iteration
% dualFeatures is a string specifying a function which computes a
% matrix Z to compute the new features by K*Z;
%
% outputs
% newTrainK is the new training kernel matrix
% newTrainK is the new test kernel matrix
% b is the matrix of dual feature directions as columns
if (nargin ~= 4)
fprintf('%s\n', help(sprintf('%s', mfilename)));
error('Incorrect number of inputs - see above usage instructions.');
end
trainData = data;
trainData = addDataField(trainData, 'X', trainX, 'examples');
trainData = addDataField(trainData, 'Y', trainY, 'labels');
testData = data;
testData= addDataField(testData, 'X', testX, 'examples');
[subspaceInfo, trainInfo] = dualGeneralFeaturesTrain(trainData, params);
[testInfo, projectionInfo] = dualGeneralFeaturesProject(trainData, testData, subspaceInfo, params);
trainData = clearAllFields(trainData);
testData = clearAllFields(testData);
newTrainX = getDataFieldValue(trainInfo.data, 'X');
newTestX = getDataFieldValue(testInfo.data, 'X');
trainInfo.data = clearAllFields(trainInfo.data);
testInfo.data = clearAllFields(testInfo.data);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -