📄 dualgreedypcatest2.m.svn-base
字号:
% A script to see if greedy KPCA is identicle to maxVar KPLS
clear;
rand('state',21);
tol = 10^-7;
numExamples = 15;
numFeatures = 10;
X = rand(numExamples, numFeatures);
X = normalise(X);
d = data;
d = addDataField(d, 'X', X, 'examples');
[trainData, testData] = splitData2(d, 2/3);
T = 5;
params.iterations = T;
params.X.kernel = getDefaultLinearKernel;
[subspaceInfo, trainInfo] = dualGreedyPCATrain(trainData, params);
[testInfo, projectionInfo] = dualGreedyPCAProject(trainData, testData, subspaceInfo, params);
gKPLSParams.iterations = T;
gKPLSParams.doubleDeflation = 0;
gKPLSParams.dualFeatureDirection = 'dualMaxSparseVariance';
gKPLSParams.X.kernel = getDefaultLinearKernel;
gKPLSParams.Y.name = ''; %Ignore Y
gKPLSParams.normalise = 0;
[subspaceInfo2, trainInfo2] = dualGeneralFeaturesTrain(trainData, gKPLSParams);
[testInfo2, projectionInfo2] = dualGeneralFeaturesProject(trainData, testData, subspaceInfo2, gKPLSParams);
newTrainX = getDataFieldValue(trainInfo.data, 'X');
newTrainX2 = getDataFieldValue(trainInfo2.data, 'X');
norm(getDataFieldValue(trainInfo.data, 'X') - getDataFieldValue(trainInfo2.data, 'X'));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -