📄 sparsecovariances.m.svn-base
字号:
function [covariances, bs] = sparseCovariances(K, Kj, Y, Yj, columnIndices)
%Comnpute the covariances of the columns of the kernel matrix (normalised
%so that cov = b'Kj'*Y*v and b'Kb = 1). ColumnIndices should be a column
%vector. The variable called bs is the values of the selected b's
if (nargin ~= 5)
fprintf('%s\n', help(sprintf('%s', mfilename)));
error('Incorrect number of inputs - see above usage instructions.');
end
numExamples = size(K, 1);
numColumns = size(K, 2);
tol = 10^6;
warning('off','MATLAB:divideByZero');
invNormVector = 1./sqrt(K(sub2ind(size(K), columnIndices , (1:numColumns)')));
%invNormVector = 1./sqrt(diag(K(columnIndices, :)));
warning('on','MATLAB:divideByZero');
infiniteIndices = setdiff((invNormVector > tol) .* (1:numColumns)', 0);
invNormVector(infiniteIndices) = 0;
YK = Y'*Kj;
covariances = abs(sqrt(sum(YK.^2, 1))' .* invNormVector);
bs = invNormVector;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -