📄 dualsparsegeneralfeatureslm3test2.m.svn-base
字号:
%A script to see if we can improve upon a linear SVM using SMA/SMC
clear;
rand('state',22);
dataSet = 'linear-synthetic3';
csvFileName = sprintf('%s.data', dataSet); ;
[X, y, numExamples, numFeatures] = readCsvData(csvFileName);
y = sign(y);
X = centerData(X);
X = normalise(X);
numExamples = min(1000, numExamples);
[X, y] = sampleData(X, y, numExamples);
[trainX, trainY, testX, testY] = splitData(X, y, 2/3);
T = 100;
subspaceMethod.name = 'dualSparseGeneralFeaturesLM3';
subspaceMethod.params.dualSparseMeasureFunction = 'sparseAlignments';
subspaceMethod.params.iterations = T;
subspaceMethod.params.cacheSize = 500;
subspaceMethod.params.chunkSize = 500;
subspaceMethod.params.kernelFunctionName = {'linearKernel'};
subspaceMethod.params.normalise = 1;
classifier.name = 'primalLibSVM';
classifier.params.kernel = 'linear';
classifier.params.C = 10;
classifier.params.weightClasses = 0;
evaluationFunc = 'accuracy';
tic
[trainPerformance, testPerformance, subspaceInfo, classifierInfo] = subspaceClassify(trainX, trainY, testX, testY, subspaceMethod, classifier, evaluationFunc);
[trainPerformance, testPerformance, subspaceInfo, classifierInfo] = subspaceClassify(trainX, trainY, testX, testY, 0, classifier, evaluationFunc);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -