📄 averageprecision.m.svn-base
字号:
function ap = averagePrecision(trueY, predictedY, rankings)
% Compute the average precision of a set of true and predicted labels.
%
% Usage: ap = averagePrecision(trueY, predictedY, rankings)
% Inputs/Outputs:
% trueY - a column vector of binary labels
% predictedY - a column vector of predicted labels
% rankings - rankings of predicted labels (higher is more
% confident)
%
% ap - the average precision
%
% Copyright (C) 2006 Charanpal Dhanjal
% This library is free software; you can redistribute it and/or
% modify it under the terms of the GNU Lesser General Public
% License as published by the Free Software Foundation; either
% version 2.1 of the License, or (at your option) any later version.
%
% This library is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% Lesser General Public License for more details.
%
% You should have received a copy of the GNU Lesser General Public
% License along with this library; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
% USA
if (nargin ~= 3)
fprintf('%s\n', help('averagePrecision'));
error('Incorrect number of inputs - see above usage instructions.');
end
numExamples = length(trueY);
numPositiveLabels = sum(trueY == 1);
tempMatrix = [-rankings, trueY , predictedY];
tempMatrix = sortrows(tempMatrix); %Sorts labels with lowest rank first
relevantLabels =((tempMatrix(:, 3) == 1) == tempMatrix(:, 2));
cumulativeSum = cumsum(relevantLabels);
indices = (1:numExamples)';
if numPositiveLabels ~= 0
ap = sum((cumulativeSum .* relevantLabels) ./ indices)/numPositiveLabels;
else
ap = 0;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -