📄 erlangb.m
字号:
%% B=erlangb(n,rho)%% This function computes the Erlang B probability that a system with n% servers, no waiting line, Poisson arrival rate lambda, service rate % (per server) mu, and intensity rho=lambda/mu will have all servers busy. %% The probability is %% B=(rho^m/m!)/(sum(rho^k/k!),k=0..m)%% It uses a recurrence relation which is more accurate than direct evaluation % of the formula. This recurrence relation is a "folk theorem". The author% would appreciate a reference to its first publication. The recurrence is%% B(0,rho)=1%% B(n,rho)=(rho*B(n-1,rho)/n)/(1+rho*B(n-1,rho)/n)%%function B=erlangb(n,rho)%% Sanity check- make sure that n is a positive integer.% if ((floor(n) ~= n) || (n < 1)) warning('n is not a positive integer'); B=NaN; return; end;%% Sanity check- make sure that rho >= 0.0.% if (rho < 0.0) warning('rho is negative!'); B=NaN; return; end;%% Start the recursion with B=1.%B=1;%% Run the recursion.%for k=1:n, B=((rho*B)/k)/(1+rho*B/k); end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -