📄 rfnnc_6.m
字号:
%Adaptive PID control based on RBF Identification
clear all;
close all;
clc;
format('long')
xiteC=0.1;
xC=[0; 0];
ciC=[-1.5, -1, 0, 1, 1.5;...
-1.5, -1, 0, 1, 1.5];
%ci=ones(2,5);
biC=[ones(1,5); ones(1,5)];
wC=0.01*ones(25,1);
wiC=0.01*ones(2,5);
% initial feedback output
O12C_1 = zeros(2,5)
u_1=0;
y_1=0;
error_1 = 0;
error_2 = 0;
tf=2;
ts=0.001;
n=floor(tf/ts);
for k=1:n
time(k)=k*ts;
rin(k)=1.0*sin(sin(2*pi*k*ts));
yout(k)=(-0.1*y_1+u_1)/(1+y_1^2); %Nonlinear plant
% Input layer
for i1 = 1:2
for j1=1:5
O12C(i1,j1) = O12C_1(i1,j1)*wiC(i1,j1) + xC(i1,end);
end
end
% Fuzzification
for i = 1:2
for j=1:5
f2C(i,j)=exp(-norm(O12C(i,j)-ciC(i,j))^2/(biC(i,j)^2));
end
end
% Rules
for j = 1:5
m1C(j)=f2C(1,j);
m2C(j)=f2C(2,j);
end
for i = 1:5
for j = 1:5
ff3C(i,j) = m2C(i)*m1C(j);
end
end
f3C = [ff3C(1,:), ff3C(2,:), ff3C(3,:), ff3C(4,:), ff3C(5,:)];
% Defuzzification
u(k)=(wC'*f3C');
wof3C=wC'*f3C';
eC(k) = rin(k)-yout(k);
% Learning
d_wC=0*wC;
for j=1:25
d_wC(j)=xiteC*eC(k)*f3C(1,j);
end
wC=wC+d_wC;
d_biC=0*biC;
for i = 1:2
for j=1:5
d_biC(i,j)=xiteC*eC(k)*wof3C*(biC(i,j)^-3)*norm(O12C(i,j)-ciC(i,j))^2;
end
end
biC=biC+ d_biC;
%pause
for i=1:2
for j=1:5
d_ciC(i,j)=xiteC*eC(k)*wof3C*(O12C(i,j)-ciC(i,j))*(biC(i,j)^-2);
end
end
ciC=ciC+d_ciC;
d_wiC=0*wiC;
for i = 1:2
for j=1:5
d_wiC(j)=xiteC*eC(k)*wof3C*(O12C(i,j)-ciC(i,j))*(biC(i,j)^-2)*O12C_1(i,j);
end
end
wiC=wiC+d_wiC;
% Return params
O12C_1 = O12C;
xC(1,k+1) = u(k);
xC(2,k+1) = y_1;
u_1=u(k);
y_1=yout(k);
k
% pause
end
figure(1);
plot(time,rin,'r',time,yout,'b');
xlabel('time(s)');ylabel('rin,yout');
legend('reference', 'Plant');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -