📄 matrix4f.java
字号:
public Vector3f mult(Vector3f vec, Vector3f store) {
if (store == null) store = new Vector3f();
float vx = vec.x, vy = vec.y, vz = vec.z;
store.x = m00 * vx + m01 * vy + m02 * vz + m03;
store.y = m10 * vx + m11 * vy + m12 * vz + m13;
store.z = m20 * vx + m21 * vy + m22 * vz + m23;
return store;
}
/**
* <code>mult</code> multiplies a vector about a rotation matrix. The
* resulting vector is returned.
*
* @param vec
* vec to multiply against.
* @param store
* a vector to store the result in. created if null is passed.
* @return the rotated vector.
*/
public Vector3f multAcross(Vector3f vec, Vector3f store) {
if (null == vec) {
logger.info("Source vector is null, null result returned.");
return null;
}
if (store == null) store = new Vector3f();
float vx = vec.x, vy = vec.y, vz = vec.z;
store.x = m00 * vx + m10 * vy + m20 * vz + m30 * 1;
store.y = m01 * vx + m11 * vy + m21 * vz + m31 * 1;
store.z = m02 * vx + m12 * vy + m22 * vz + m32 * 1;
return store;
}
/**
* <code>mult</code> multiplies a quaternion about a matrix. The
* resulting vector is returned.
*
* @param vec
* vec to multiply against.
* @param store
* a quaternion to store the result in. created if null is passed.
* @return store = this * vec
*/
public Quaternion mult(Quaternion vec, Quaternion store) {
if (null == vec) {
logger.warning("Source vector is null, null result returned.");
return null;
}
if (store == null) store = new Quaternion();
float x = m00 * vec.x + m10 * vec.y + m20 * vec.z + m30 * vec.w;
float y = m01 * vec.x + m11 * vec.y + m21 * vec.z + m31 * vec.w;
float z = m02 * vec.x + m12 * vec.y + m22 * vec.z + m32 * vec.w;
float w = m03 * vec.x + m13 * vec.y + m23 * vec.z + m33 * vec.w;
store.x = x;
store.y = y;
store.z = z;
store.w = w;
return store;
}
/**
* <code>mult</code> multiplies an array of 4 floats against this rotation
* matrix. The results are stored directly in the array. (vec4f x mat4f)
*
* @param vec4f
* float array (size 4) to multiply against the matrix.
* @return the vec4f for chaining.
*/
public float[] mult(float[] vec4f) {
if (null == vec4f || vec4f.length != 4) {
logger.warning("invalid array given, must be nonnull and length 4");
return null;
}
float x = vec4f[0], y = vec4f[1], z = vec4f[2], w = vec4f[3];
vec4f[0] = m00 * x + m01 * y + m02 * z + m03 * w;
vec4f[1] = m10 * x + m11 * y + m12 * z + m13 * w;
vec4f[2] = m20 * x + m21 * y + m22 * z + m23 * w;
vec4f[3] = m30 * x + m31 * y + m32 * z + m33 * w;
return vec4f;
}
/**
* <code>mult</code> multiplies an array of 4 floats against this rotation
* matrix. The results are stored directly in the array. (vec4f x mat4f)
*
* @param vec4f
* float array (size 4) to multiply against the matrix.
* @return the vec4f for chaining.
*/
public float[] multAcross(float[] vec4f) {
if (null == vec4f || vec4f.length != 4) {
logger.warning("invalid array given, must be nonnull and length 4");
return null;
}
float x = vec4f[0], y = vec4f[1], z = vec4f[2], w = vec4f[3];
vec4f[0] = m00 * x + m10 * y + m20 * z + m30 * w;
vec4f[1] = m01 * x + m11 * y + m21 * z + m31 * w;
vec4f[2] = m02 * x + m12 * y + m22 * z + m32 * w;
vec4f[3] = m03 * x + m13 * y + m23 * z + m33 * w;
return vec4f;
}
/**
* Inverts this matrix as a new Matrix4f.
*
* @return The new inverse matrix
*/
public Matrix4f invert() {
return invert(null);
}
/**
* Inverts this matrix and stores it in the given store.
*
* @return The store
*/
public Matrix4f invert(Matrix4f store) {
if (store == null) store = new Matrix4f();
float fA0 = m00*m11 - m01*m10;
float fA1 = m00*m12 - m02*m10;
float fA2 = m00*m13 - m03*m10;
float fA3 = m01*m12 - m02*m11;
float fA4 = m01*m13 - m03*m11;
float fA5 = m02*m13 - m03*m12;
float fB0 = m20*m31 - m21*m30;
float fB1 = m20*m32 - m22*m30;
float fB2 = m20*m33 - m23*m30;
float fB3 = m21*m32 - m22*m31;
float fB4 = m21*m33 - m23*m31;
float fB5 = m22*m33 - m23*m32;
float fDet = fA0*fB5-fA1*fB4+fA2*fB3+fA3*fB2-fA4*fB1+fA5*fB0;
if ( FastMath.abs(fDet) <= FastMath.FLT_EPSILON )
throw new ArithmeticException("This matrix cannot be inverted");
store.m00 = + m11*fB5 - m12*fB4 + m13*fB3;
store.m10 = - m10*fB5 + m12*fB2 - m13*fB1;
store.m20 = + m10*fB4 - m11*fB2 + m13*fB0;
store.m30 = - m10*fB3 + m11*fB1 - m12*fB0;
store.m01 = - m01*fB5 + m02*fB4 - m03*fB3;
store.m11 = + m00*fB5 - m02*fB2 + m03*fB1;
store.m21 = - m00*fB4 + m01*fB2 - m03*fB0;
store.m31 = + m00*fB3 - m01*fB1 + m02*fB0;
store.m02 = + m31*fA5 - m32*fA4 + m33*fA3;
store.m12 = - m30*fA5 + m32*fA2 - m33*fA1;
store.m22 = + m30*fA4 - m31*fA2 + m33*fA0;
store.m32 = - m30*fA3 + m31*fA1 - m32*fA0;
store.m03 = - m21*fA5 + m22*fA4 - m23*fA3;
store.m13 = + m20*fA5 - m22*fA2 + m23*fA1;
store.m23 = - m20*fA4 + m21*fA2 - m23*fA0;
store.m33 = + m20*fA3 - m21*fA1 + m22*fA0;
float fInvDet = 1.0f/fDet;
store.multLocal(fInvDet);
return store;
}
/**
* Inverts this matrix locally.
*
* @return this
*/
public Matrix4f invertLocal() {
float fA0 = m00*m11 - m01*m10;
float fA1 = m00*m12 - m02*m10;
float fA2 = m00*m13 - m03*m10;
float fA3 = m01*m12 - m02*m11;
float fA4 = m01*m13 - m03*m11;
float fA5 = m02*m13 - m03*m12;
float fB0 = m20*m31 - m21*m30;
float fB1 = m20*m32 - m22*m30;
float fB2 = m20*m33 - m23*m30;
float fB3 = m21*m32 - m22*m31;
float fB4 = m21*m33 - m23*m31;
float fB5 = m22*m33 - m23*m32;
float fDet = fA0*fB5-fA1*fB4+fA2*fB3+fA3*fB2-fA4*fB1+fA5*fB0;
if ( FastMath.abs(fDet) <= FastMath.FLT_EPSILON )
return zero();
float f00 = + m11*fB5 - m12*fB4 + m13*fB3;
float f10 = - m10*fB5 + m12*fB2 - m13*fB1;
float f20 = + m10*fB4 - m11*fB2 + m13*fB0;
float f30 = - m10*fB3 + m11*fB1 - m12*fB0;
float f01 = - m01*fB5 + m02*fB4 - m03*fB3;
float f11 = + m00*fB5 - m02*fB2 + m03*fB1;
float f21 = - m00*fB4 + m01*fB2 - m03*fB0;
float f31 = + m00*fB3 - m01*fB1 + m02*fB0;
float f02 = + m31*fA5 - m32*fA4 + m33*fA3;
float f12 = - m30*fA5 + m32*fA2 - m33*fA1;
float f22 = + m30*fA4 - m31*fA2 + m33*fA0;
float f32 = - m30*fA3 + m31*fA1 - m32*fA0;
float f03 = - m21*fA5 + m22*fA4 - m23*fA3;
float f13 = + m20*fA5 - m22*fA2 + m23*fA1;
float f23 = - m20*fA4 + m21*fA2 - m23*fA0;
float f33 = + m20*fA3 - m21*fA1 + m22*fA0;
m00 = f00;
m01 = f01;
m02 = f02;
m03 = f03;
m10 = f10;
m11 = f11;
m12 = f12;
m13 = f13;
m20 = f20;
m21 = f21;
m22 = f22;
m23 = f23;
m30 = f30;
m31 = f31;
m32 = f32;
m33 = f33;
float fInvDet = 1.0f/fDet;
multLocal(fInvDet);
return this;
}
/**
* Returns a new matrix representing the adjoint of this matrix.
*
* @return The adjoint matrix
*/
public Matrix4f adjoint() {
return adjoint(null);
}
/**
* Places the adjoint of this matrix in store (creates store if null.)
*
* @param store
* The matrix to store the result in. If null, a new matrix is created.
* @return store
*/
public Matrix4f adjoint(Matrix4f store) {
if (store == null) store = new Matrix4f();
float fA0 = m00*m11 - m01*m10;
float fA1 = m00*m12 - m02*m10;
float fA2 = m00*m13 - m03*m10;
float fA3 = m01*m12 - m02*m11;
float fA4 = m01*m13 - m03*m11;
float fA5 = m02*m13 - m03*m12;
float fB0 = m20*m31 - m21*m30;
float fB1 = m20*m32 - m22*m30;
float fB2 = m20*m33 - m23*m30;
float fB3 = m21*m32 - m22*m31;
float fB4 = m21*m33 - m23*m31;
float fB5 = m22*m33 - m23*m32;
store.m00 = + m11*fB5 - m12*fB4 + m13*fB3;
store.m10 = - m10*fB5 + m12*fB2 - m13*fB1;
store.m20 = + m10*fB4 - m11*fB2 + m13*fB0;
store.m30 = - m10*fB3 + m11*fB1 - m12*fB0;
store.m01 = - m01*fB5 + m02*fB4 - m03*fB3;
store.m11 = + m00*fB5 - m02*fB2 + m03*fB1;
store.m21 = - m00*fB4 + m01*fB2 - m03*fB0;
store.m31 = + m00*fB3 - m01*fB1 + m02*fB0;
store.m02 = + m31*fA5 - m32*fA4 + m33*fA3;
store.m12 = - m30*fA5 + m32*fA2 - m33*fA1;
store.m22 = + m30*fA4 - m31*fA2 + m33*fA0;
store.m32 = - m30*fA3 + m31*fA1 - m32*fA0;
store.m03 = - m21*fA5 + m22*fA4 - m23*fA3;
store.m13 = + m20*fA5 - m22*fA2 + m23*fA1;
store.m23 = - m20*fA4 + m21*fA2 - m23*fA0;
store.m33 = + m20*fA3 - m21*fA1 + m22*fA0;
return store;
}
/**
* <code>determinant</code> generates the determinate of this matrix.
*
* @return the determinate
*/
public float determinant() {
float fA0 = m00*m11 - m01*m10;
float fA1 = m00*m12 - m02*m10;
float fA2 = m00*m13 - m03*m10;
float fA3 = m01*m12 - m02*m11;
float fA4 = m01*m13 - m03*m11;
float fA5 = m02*m13 - m03*m12;
float fB0 = m20*m31 - m21*m30;
float fB1 = m20*m32 - m22*m30;
float fB2 = m20*m33 - m23*m30;
float fB3 = m21*m32 - m22*m31;
float fB4 = m21*m33 - m23*m31;
float fB5 = m22*m33 - m23*m32;
float fDet = fA0*fB5-fA1*fB4+fA2*fB3+fA3*fB2-fA4*fB1+fA5*fB0;
return fDet;
}
/**
* Sets all of the values in this matrix to zero.
*
* @return this matrix
*/
public Matrix4f zero() {
m00 = m01 = m02 = m03 = 0.0f;
m10 = m11 = m12 = m13 = 0.0f;
m20 = m21 = m22 = m23 = 0.0f;
m30 = m31 = m32 = m33 = 0.0f;
return this;
}
public Matrix4f add(Matrix4f mat) {
Matrix4f result = new Matrix4f();
result.m00 = this.m00 + mat.m00;
result.m01 = this.m01 + mat.m01;
result.m02 = this.m02 + mat.m02;
result.m03 = this.m03 + mat.m03;
result.m10 = this.m10 + mat.m10;
result.m11 = this.m11 + mat.m11;
result.m12 = this.m12 + mat.m12;
result.m13 = this.m13 + mat.m13;
result.m20 = this.m20 + mat.m20;
result.m21 = this.m21 + mat.m21;
result.m22 = this.m22 + mat.m22;
result.m23 = this.m23 + mat.m23;
result.m30 = this.m30 + mat.m30;
result.m31 = this.m31 + mat.m31;
result.m32 = this.m32 + mat.m32;
result.m33 = this.m33 + mat.m33;
return result;
}
/**
* <code>add</code> adds the values of a parameter matrix to this matrix.
*
* @param mat
* the matrix to add to this.
*/
public void addLocal(Matrix4f mat) {
m00 += mat.m00;
m01 += mat.m01;
m02 += mat.m02;
m03 += mat.m03;
m10 += mat.m10;
m11 += mat.m11;
m12 += mat.m12;
m13 += mat.m13;
m20 += mat.m20;
m21 += mat.m21;
m22 += mat.m22;
m23 += mat.m23;
m30 += mat.m30;
m31 += mat.m31;
m32 += mat.m32;
m33 += mat.m33;
}
public Vector3f toTranslationVector() {
return new Vector3f(m03, m13, m23);
}
public void toTranslationVector(Vector3f vector) {
vector.set(m03, m13, m23);
}
public Quaternion toRotationQuat() {
Quaternion quat = new Quaternion();
quat.fromRotationMatrix(toRotationMatrix());
return quat;
}
public void toRotationQuat(Quaternion q) {
q.fromRotationMatrix(toRotationMatrix());
}
public Matrix3f toRotationMatrix() {
return new Matrix3f(m00, m01, m02, m10, m11, m12, m20, m21, m22);
}
public void toRotationMatrix(Matrix3f mat) {
mat.m00 = m00;
mat.m01 = m01;
mat.m02 = m02;
mat.m10 = m10;
mat.m11 = m11;
mat.m12 = m12;
mat.m20 = m20;
mat.m21 = m21;
mat.m22 = m22;
}
/**
* <code>setTranslation</code> will set the matrix's translation values.
*
* @param translation
* the new values for the translation.
* @throws JmeException
* if translation is not size 3.
*/
public void setTranslation(float[] translation) {
if (translation.length != 3) { throw new JmeException(
"Translation size must be 3."); }
m03 = translation[0];
m13 = translation[1];
m23 = translation[2];
}
/**
* <code>setTranslation</code> will set the matrix's translation values.
*
* @param x
* value of the translation on the x axis
* @param y
* value of the translation on the y axis
* @param z
* value of the translation on the z axis
*/
public void setTranslation(float x, float y, float z) {
m03 = x;
m13 = y;
m23 = z;
}
/**
* <code>setTranslation</code> will set the matrix's translation values.
*
* @param translation
* the new values for the translation.
*/
public void setTranslation(Vector3f translation) {
m03 = translation.x;
m13 = translation.y;
m23 = translation.z;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -