📄 svm-predict.cpp
字号:
#include <stdio.h>#include <ctype.h>#include <stdlib.h>#include <string.h>#include "svm.h"char* line;int max_line_len = 100000;struct svm_node *x;int max_nr_attr = 64;struct svm_model* model;int predict_probability=0;
int predict_rankresult=0;
/*
Original version
*/
/*
void predict(FILE *input, FILE *output)
{
int correct = 0;
int total = 0;
double error = 0;
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
int svm_type=svm_get_svm_type(model);
int nr_class=svm_get_nr_class(model);
int *labels=(int *) malloc(nr_class*sizeof(int));
double *prob_estimates=NULL;
int j;
if(predict_probability)
{
if (svm_type==NU_SVR || svm_type==EPSILON_SVR)
printf("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model));
else
{
svm_get_labels(model,labels);
prob_estimates = (double *) malloc(nr_class*sizeof(double));
fprintf(output,"labels");
for(j=0;j<nr_class;j++)
fprintf(output," %d",labels[j]);
fprintf(output,"\n");
}
}
while(1)
{
int i = 0;
int c;
double target,v;
if (fscanf(input,"%lf",&target)==EOF)
break;
while(1)
{
if(i>=max_nr_attr-1) // need one more for index = -1
{
max_nr_attr *= 2;
x = (struct svm_node *) realloc(x,max_nr_attr*sizeof(struct svm_node));
}
do {
c = getc(input); //printf("(%c,%d)", c, isspace(c));
if(c=='\n' || c==EOF) goto out2;
} while(!isspace(c));
ungetc(c,input);
fscanf(input,"%d:%lf",&x[i].index,&x[i].value);
++i;
}
out2:
x[i++].index = -1;
if (predict_probability && (svm_type==C_SVC || svm_type==NU_SVC))
{
v = svm_predict_probability(model,x,prob_estimates);
fprintf(output,"%g ",v);
for(j=0;j<nr_class;j++)
fprintf(output,"%g ",prob_estimates[j]);
fprintf(output,"\n");
}
else
{
v = svm_predict(model,x);
fprintf(output,"%g\n",v);
}
if(v == target)
++correct;
error += (v-target)*(v-target);
sumv += v;
sumy += target;
sumvv += v*v;
sumyy += target*target;
sumvy += v*target;
++total;
}
printf("Accuracy = %g%% (%d/%d) (classification)\n",
(double)correct/total*100,correct,total);
printf("Mean squared error = %g (regression)\n",error/total);
printf("Squared correlation coefficient = %g (regression)\n",
((total*sumvy-sumv*sumy)*(total*sumvy-sumv*sumy))/
((total*sumvv-sumv*sumv)*(total*sumyy-sumy*sumy))
);
if(predict_probability)
{
free(prob_estimates);
free(labels);
}
}
*/
/*
Extended version with dense format
*/
void predict(FILE *input, FILE *output){ int correct = 0; int total = 0; double error = 0; double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0; int svm_type=svm_get_svm_type(model); int nr_class=svm_get_nr_class(model); int *labels=(int *) malloc(nr_class*sizeof(int)); double *prob_estimates=NULL; int j;
int type, dim; if(predict_probability) { if (svm_type==NU_SVR || svm_type==EPSILON_SVR) printf("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model)); else { svm_get_labels(model,labels); prob_estimates = (double *) malloc(nr_class*sizeof(double)); fprintf(output,"labels"); for(j=0;j<nr_class;j++) fprintf(output," %d",labels[j]); fprintf(output,"\n"); } }
type = 0; // sparse format
dim = 0;
j = 0;
for(int c = fgetc(input); (c != EOF) && (dim == 0); c = fgetc(input))
{
switch(c)
{
case '\n':
dim = j;
break;
case ':':
++j;
break;
case ',':
++j;
type = 1;
break;
default:
;
}
}
rewind(input);
while(1) { int i = 0; int c; double target,v;
if (type == 0) // sparse format
{
if (fscanf(input,"%lf",&target) == EOF) break;
}
else if (type == 1) // dense format
{
c = getc(input);
if (c == EOF)
{
break;
}
else
{
ungetc(c,input);
}
} while(1) { if(i>=max_nr_attr-1) // need one more for index = -1 { max_nr_attr *= 2; x = (struct svm_node *) realloc(x,max_nr_attr*sizeof(struct svm_node)); } do {
c = getc(input);
if((c=='\n') || (c==EOF)) break;
} while(isspace(c));
if((c=='\n') || (c==EOF)) break;
ungetc(c,input);
if (type == 0) // sparse format
{
#ifdef INT_FEAT
int tmpindex;
int tmpvalue;
fscanf(input,"%d:%d",&tmpindex,&tmpvalue);
x[i].index = tmpindex;
x[i].value = tmpvalue;
#else
fscanf(input,"%d:%lf",&x[i].index,&x[i].value);
#endif
++i;
}
else if ((type == 1) && (i < dim)) // dense format, read a feature
{
x[i].index = i;
#ifdef INT_FEAT
int tmpvalue;
fscanf(input, "%d,", &tmpvalue);
x[i].value = tmpvalue;
#else
fscanf(input, "%lf,", &(x[i].value));
#endif
++i;
}
else if ((type == 1) && (i >= dim)) // dense format, read the label
{
fscanf(input,"%lf",&target);
}
} x[i++].index = -1;
if (predict_probability && (svm_type==C_SVC || svm_type==NU_SVC)) { v = svm_predict_probability(model,x,prob_estimates); fprintf(output,"%g ",v); for(j=0;j<nr_class;j++) fprintf(output,"%g ",prob_estimates[j]); fprintf(output,"\n"); } else { v = svm_predict(model,x); fprintf(output,"%g\n",v); } if(v == target) ++correct; error += (v-target)*(v-target); sumv += v; sumy += target; sumvv += v*v; sumyy += target*target; sumvy += v*target; ++total; } printf("Accuracy = %g%% (%d/%d) (classification)\n", (double)correct/total*100,correct,total); printf("Mean squared error = %g (regression)\n",error/total); printf("Squared correlation coefficient = %g (regression)\n", ((total*sumvy-sumv*sumy)*(total*sumvy-sumv*sumy))/ ((total*sumvv-sumv*sumv)*(total*sumyy-sumy*sumy)) ); if(predict_probability) { free(prob_estimates); free(labels); }}
/*
Extended version with dense format
*/
void predict_rank(FILE *input, FILE *output)
{
int correct = 0;
int total = 0;
double error = 0;
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
int svm_type=svm_get_svm_type(model);
int nr_class=svm_get_nr_class(model);
int *labels=(int *) malloc(nr_class*sizeof(int));
double *prob_estimates=NULL;
int j;
int type, dim;
if(predict_probability)
{
if (svm_type==NU_SVR || svm_type==EPSILON_SVR)
printf("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model));
else
{
svm_get_labels(model,labels);
prob_estimates = (double *) malloc(nr_class*sizeof(double));
fprintf(output,"labels");
for(j=0;j<nr_class;j++)
fprintf(output," %d",labels[j]);
fprintf(output,"\n");
}
}
type = 0; // sparse format
dim = 0;
j = 0;
for(int c = fgetc(input); (c != EOF) && (dim == 0); c = fgetc(input))
{
switch(c)
{
case '\n':
dim = j;
break;
case ':':
++j;
break;
case ',':
++j;
type = 1;
break;
default:
;
}
}
rewind(input);
while(1)
{
int i = 0;
int c;
double target,v;
if (type == 0) // sparse format
{
if (fscanf(input,"%lf",&target) == EOF)
break;
}
else if (type == 1) // dense format
{
c = getc(input);
if (c == EOF)
{
break;
}
else
{
ungetc(c,input);
}
}
while(1)
{
if(i>=max_nr_attr-1) // need one more for index = -1
{
max_nr_attr *= 2;
x = (struct svm_node *) realloc(x,max_nr_attr*sizeof(struct svm_node));
}
do {
c = getc(input);
if((c=='\n') || (c==EOF)) break;
} while(isspace(c));
if((c=='\n') || (c==EOF)) break;
ungetc(c,input);
if (type == 0) // sparse format
{
#ifdef INT_FEAT
int tmpindex;
int tmpvalue;
fscanf(input,"%d:%d",&tmpindex,&tmpvalue);
x[i].index = tmpindex;
x[i].value = tmpvalue;
#else
fscanf(input,"%d:%lf",&x[i].index,&x[i].value);
#endif
++i;
}
else if ((type == 1) && (i < dim)) // dense format, read a feature
{
x[i].index = i;
#ifdef INT_FEAT
int tmpvalue;
fscanf(input, "%d,", &tmpvalue);
x[i].value = tmpvalue;
#else
fscanf(input, "%lf,", &(x[i].value));
#endif
++i;
}
else if ((type == 1) && (i >= dim)) // dense format, read the label
{
fscanf(input,"%lf",&target);
}
}
x[i++].index = -1;
if (predict_probability && (svm_type==C_SVC || svm_type==NU_SVC))
{
v = svm_predict_probability(model,x,prob_estimates);
fprintf(output,"%g ",v);
for(j=0;j<nr_class;j++)
fprintf(output,"%g ",prob_estimates[j]);
fprintf(output,"\n");
}
else if (nr_class == 2)
{
v = svm_predict_rank(model,x);
fprintf(output,"%.16g\n", v);
v = (v>0?model->label[0]:model->label[1]);
//v = (v>0?1:-1);
//fprintf(output,"%.16g\n", v);
}
if(v == target)
++correct;
error += (v-target)*(v-target);
sumv += v;
sumy += target;
sumvv += v*v;
sumyy += target*target;
sumvy += v*target;
++total;
}
printf("Accuracy = %g%% (%d/%d) (classification)\n",
(double)correct/total*100,correct,total);
printf("Mean squared error = %g (regression)\n",error/total);
printf("Squared correlation coefficient = %g (regression)\n",
((total*sumvy-sumv*sumy)*(total*sumvy-sumv*sumy))/
((total*sumvv-sumv*sumv)*(total*sumyy-sumy*sumy))
);
if(predict_probability)
{
free(prob_estimates);
free(labels);
}
}
void exit_with_help(){ printf( "Usage: bvm-predict [options] test_file model_file output_file\n" "options:\n" "-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); for one-class SVM only 0 is supported\n"
"-r Ranking: whether to output the ranking score or not, 0 or 1 (default 0)\n" ); exit(1);}int main(int argc, char **argv){ FILE *input, *output; int i; printf("int %d, short int %d, char %d, double %d, float %d, node %d\n",sizeof(int),sizeof(short int), sizeof(char), sizeof(double), sizeof(float), sizeof(svm_node)); // parse options for(i=1;i<argc;i++) { if(argv[i][0] != '-') break; ++i; switch(argv[i-1][1]) {
case 'r':
predict_rankresult = atoi(argv[i]);
break; case 'b': predict_probability = atoi(argv[i]); break; default: fprintf(stderr,"unknown option\n"); exit_with_help(); } } if(i>=argc) exit_with_help(); input = fopen(argv[i],"r"); if(input == NULL) { fprintf(stderr,"can't open input file %s\n",argv[i]); exit(1); } output = fopen(argv[i+2],"w"); if(output == NULL) { fprintf(stderr,"can't open output file %s\n",argv[i+2]); exit(1); } if((model=svm_load_model(argv[i+1]))==0) { fprintf(stderr,"can't open model file %s\n",argv[i+1]); exit(1); } printf("Kernel type: %d\n", model->param.kernel_type); line = (char *) malloc(max_line_len*sizeof(char)); x = (struct svm_node *) malloc(max_nr_attr*sizeof(struct svm_node)); if(predict_probability) if(svm_check_probability_model(model)==0) { fprintf(stderr,"Model does not support probabiliy estimates\n"); exit(1); }
//displayInfoAboutModel(model);
if (predict_rankresult)
predict_rank(input, output);
else predict(input, output);
fclose(input);
svm_destroy_model(model); free(line); free(x); fclose(output);
return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -