📄 project561.m
字号:
%
% p5oject56 % Epsiolon 90 degree
%
%=============================== RESET ==================================
clear
close all
clc
% basic inputs ==========================================================
fc=2000; % MHz Carrier frequency
F=16; % sampling rate: fraction of wave length
V=10; % m/s MS1 speed
NFFT=128; % Number of points in FFT
Nsamples=1000 % Number of samples
NSC = 100 % number of point scatterers
avPower=-20; % sigma^2 Average power
lambdac=300/fc; % m wavelength
% ================== BS diversity parameters ===========================
epsilon =90; % (degree) angle between baseline between antennas and link direction
P = 1; % separation between BS antennas in number of wavelengths
Delta = P*lambdac; % m actual separation between antennas
Nsims=50; % number of simulations
% ======================== geometry inputs ===========================
dBS=20000; % distance BS origin (m) beginning mobile route
BSx=dBS*cosd(90) % location of transmitter (BS) x-coordinate
BSy=dBS*sind(90) % location of transmitter (BS) y-coordinate
% Create a ring of point scatterers =========================================
D=100; % radius from origin
alpha=rand(NSC,1)*360; % random draw of angles of arrival
SCx=D.*cosd(alpha);
SCy=D.*sind(alpha);
figure,plot(SCx,SCy,'k*', BSx,BSy,'k^'), hold on
% indirect parameters ===================================================
Dx=lambdac/F; % m sampling spacing
ts=Dx/V; % s time sampling interval
fs=1/ts; % Hz sampling frequency
kc=2*pi/lambdac; % propagation constant
a=sqrt(10.^(avPower/10)/NSC) % magnitude of echoes
sigma=sqrt(0.5*10.^(avPower/10)) % Rayleigh parameter
fm=V/lambdac; % max Doppler shift
timeaxis=ts.*[0:Nsamples-1];
MS0=-V*timeaxis(end)/2; % initial location of receiver (MS) x-coordinate
MSx=MS0+V.*timeaxis; % MS route along x-axis
MSy=zeros(Nsamples); % MS route along x-axis (y=0)
plot(MSx,MSy,'k')
MINx=min(min(BSx, SCx))-100;
MAXx=max(max(BSx, SCx))+100;
MINy=min(min(min(BSy, SCy)))-100;
MAXy=max(max(max(BSy, SCy)))+100;
axis([MINx MAXx MINy MAXy])
axis equal
xlabel('Propagation scenario. Dimensions in meters')
ylabel('Propagation scenario. Dimensions in meters')
m1=[];
m2=[];
divr=[];
for ii=0:Nsims
% ============ create antenna separations =================
BSx1=BSx+(ii*Delta/2)*sind(epsilon);
BSx2=BSx-(ii*Delta/2)*sind(epsilon);
BSy1=BSy+(ii*Delta/2)*cosd(epsilon);
BSy2=BSy-(ii*Delta/2)*cosd(epsilon);
% calculate distance matrix =============================================
distBSSC1=sqrt((BSx1-SCx).^2+(BSy1-SCy).^2);
distBSSC2=sqrt((BSx2-SCx).^2+(BSy2-SCy).^2);
distBSSCext1=repmat(distBSSC1,1,Nsamples);
distBSSCext2=repmat(distBSSC2,1,Nsamples);
distSCMS=zeros(NSC,Nsamples);
for ii=1:Nsamples
distSCMS(:,ii)=sqrt((SCx-MSx(ii)).^2+SCy.^2);
end
distBSSCMS1=distBSSCext1+distSCMS;
distBSSCMS2=distBSSCext2+distSCMS;
% calculate complex envelope ===========================================
ray1=a*exp(-j*kc*distBSSCMS1);
ray2=a*exp(-j*kc*distBSSCMS2);
r1=sum(ray1); m1aux=abs(r1);
r2=sum(ray2); m2aux=abs(r2);
divraux=max(m1aux,m2aux);
m1=[m1 m1aux'];
m2=[m2 m2aux'];
divr=[divr divraux'];
% =====================================================================
end % of for loop
% ======= calculating diversity gain using CDF ====================
CDFxx1=[];CDFxx2=[];CDFxx3=[];
CDFyy1=[];CDFyy2=[];CDFyy3=[];
for ii=0:Nsims
[CDFx1,CDFy1]=fCDF(20*log10(m1(:,ii+1)));
[CDFx2,CDFy2]=fCDF(20*log10(m2(:,ii+1)));
[CDFx3,CDFy3]=fCDF(20*log10(divr(:,ii+1)));
CDFxx1=[CDFxx1 CDFx1']; CDFxx2=[CDFxx2 CDFx2']; CDFxx3=[CDFxx3 CDFx3'];
CDFyy1=[CDFyy1 CDFy1']; CDFyy2=[CDFyy2 CDFy2']; CDFyy3=[CDFyy3 CDFy3'];
end
figure,semilogy(CDFxx1(:,1),CDFyy1(:,1), CDFxx3,CDFyy3)
xlabel('Relative received signal level (dB)')
ylabel('Probability the abscissa is not exceeded')
% ========== evolution of cross-correlation coeff ==============
rho=[];
for ii=1:Nsims
rhoaux=xcorr(m1(:,ii)-mean(m1(:,ii)),m2(:,ii)-mean(m2(:,ii)),'coeff');
rho=[rho rhoaux(length(m1))];
end
% Theoretical values of cross correlation
kk=D/dBS;
z1=kc*kk*sind(epsilon).*Delta*[0:Nsims-1];
z2=0.5*kk^2*kc*sqrt(1-(3*cosd(epsilon)^2/4)).*Delta*[0:Nsims-1];
rhotheoretical=besselj(0,z1).^2.*besselj(0,z2).^2;
figure,plot(Delta*[0:Nsims-1]/lambdac,rhotheoretical,'k',Delta*[0:Nsims-1]/lambdac,rho,'k.')
xlabel('Antenna separation (wavelengths)')
ylabel('Cross-correlation coefficient at BS')
legend('Theoretical', 'Simulated', 'Location', 'SouthWest');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -