📄 main.m
字号:
Turbo_frame = L_total - (size(Generator,2) - 1);
N_Turbo_frame = (Modulation * RateSTCoding * N_ts * N_data_sym_ts)/N1;
[temp, Alpha2] = sort(rand(1, L_total / RateChCoding * N_Turbo_frame));
% 如果使用卷积+RS+交织:
% 假设每个用户的RS码参数相同,均为(204,188,8)
UserRS_Coding = repmat([255,239,8]',1,N_user);
TraceBackLen = 3; % 卷积码译码参数
% 假设每个用户的卷积码trellis 结构体相同
UserTrellis = repmat( poly2trellis(3,[6 7]),1,N_user );
% 4) 自适应调制: ,当TurnOn.AdptMod == 1时,
% 1--自适应调制方法1, 给功率增加最小的子载波分配比特和功率, 子载波分配由AllocMethod确定
% 2--自适应调制方法2, 按照信道响应降序排列,子载波间争夺比特和功率, 子载波分配由AllocMethod确定
% 当TurnOn.AdptMod == 0 时,此不起作用, 无自适应调制
AdptMethod = 1;
% 子载波分配方法, 1--相邻分配, 2--交织分配, 3---跳频分配 ,4--自适应子载波分配
AllocMethod = 1;
% 自适应调制算法中需要的目标误比特率
TargetBer = 1e-3;
% 5)定时同步:
PreNoiseLen = 500; % 为定时算法加的前噪样点数
PostNoiseLen = 500; % 后噪样点数
delta_fc = 10e3; % 载波频偏 (Hz)
% 帧(粗)定时
% 帧定时算法, 1--单窗口能量检测方法, 2--双窗口能量检测方法 , 3--延时相关方法帧定时
FrameTiming = 1;
Window1 = 128; % 帧定时算法的窗口宽度
Threshold1 = 0.4; % 帧定时算法门限
Delay1 = 128; % 帧定时延时相关算法的延时样点数
% 载波频偏粗估计
WinStart = 128*2;
WinSize = 128;
Delay2 = 128*9;
% 符号定时算法
Window2 = 256; % 和已知序列求相关,序列的长度
TimingAhead = 0; % 定时提前的样点数
% 载波频偏细估计
WinStart2 = 256;
WinSize2 = 1024;
Delay3 = 1280;
% 6) 测试选项
% 0 -- 无测试, 加AWGN和瑞利多径信道效应; 1 -- 测试,不加AWGN,仅考虑瑞利多径信道效应;
% 2 -- 测试,不加瑞利多径信道效应, 仅考虑AWGN;
ChannelEffectTest = 0;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 二. 仿真主体程序部分
% Eb/No信噪比循环
snr_idx = 1;
for Eb_No_dB = Eb_NoStart:Eb_NoInterval:Eb_NoEnd
Eb_No_dB
Eb_No = 10^(Eb_No_dB/10);
var_noise = Eb/(2*Eb_No*RateChCoding); % 噪声样点的功率
tic; % 计算时间开始
% OFDM帧/数据包循环
for frame = 1:N_frame
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 1. 信道参数产生部分
% 产生不同用户(cell区分), 不同收发天线对(矩阵的第三维区分),不同OFDM符号
% 时间(矩阵列区分), 多径信道不同时延径(矩阵行区分)的时域信道响应
h_time = cell(1,N_user);
H_freq = cell(1,N_user);
for u = 1:N_user
% 得到时域信道的参数
h_time{u} = channel_gen( ch{u}.Power,ch{u}.fd, T_sym*fs, T_sample, N_sym, ...
N_frame, frame, N_Tx_ant, N_Rx_ant );
% 由信道时域响应,得到信道的频域响应
H_freq{u} = to_freq_channel( h_time{u}, ch{u} ,N_subc ,N_sym, N_Tx_ant,...
N_Rx_ant,ChannelEffectTest);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 2. 发射机部分
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 多用户数据生成模块
[user_bit,user_bit_cnt] = user_bit_gen( N_user, N_data ,N_ts, N_data_sym_ts, RateSTCoding,...
Modulation,RateChCoding,Turbo_frame , N_Turbo_frame , TurnOn.ChannelCoding );
% 信道编码模块, 包括RS编码, 卷积编码等
coded_user_bit = channel_coding( user_bit,ChCodingMethod,Dec_alg,L_total,Generator,Puncture,...
N_iter,RateChCoding,Alpha,Turbo_frame,N_Turbo_frame, UserRS_Coding ,UserTrellis,...
TraceBackLen,TurnOn.ChannelCoding );
coded_user_bit{1} = coded_user_bit{1}(Alpha2);
% 自适应调制和多用户复用模块
% 单用户情况,有自适应调制
if TurnOn.AdptMod
[user_subc_alloc , mod_subc ,pwr_subc, pad_bit_cnt] = adpt_mod_para...
( coded_user_bit,N_data_sym,Idx_data,AllocMethod,AdptMethod ,...
H_freq,var_noise,TargetBer );
% 多用户情况,使用固定或动态子载波分配,不需要自适应调制
else
[user_subc_alloc , mod_subc ,pwr_subc, pad_bit_cnt] = adpt_mod_para...
( coded_user_bit,N_data_sym*RateSTCoding ,Idx_data ,AllocMethod );
end
% 按照给定的每用户,每子载波的调制方式,进行自适应调制
mod_sym = modulator(coded_user_bit,user_subc_alloc,mod_subc,...
pwr_subc, pad_bit_cnt ,N_subc,N_data_sym*RateSTCoding ,TurnOn.AdptMod );
% 发送分集, 使用空时编码
st_coded = st_coding( mod_sym, N_Tx_ant, N_data_sym, ST_Code);
% 在数据符号帧之间插入导频OFDM符号, 并在数据OFDM符号中加间隔的导频
[pilot_added ,known_pilot] = pilot_insert(st_coded,N_pilot_sym_ts,N_data_sym_ts,N_ts,Pos_pilot_sym,...
Pos_data_sym,Idx_pilot,PilotValue,N_subc,Idx_used,N_Tx_ant,L_delay,MIMO_CE_Method,SwitchOrthogonalPilot);
% OFDM调制. 如果使用发送分集,则输出多条天线的信号
transmit_signal = ofdm_mod(pilot_added,PrefixRatio,N_subc,N_used,N_sym_ts,N_ts,...
Idx_used,N_Tx_ant,TurnOn.AddChFreq);
% 成帧,加前导序列
[transmit_signal, syn_preamble] = framing(transmit_signal,N_syn_preamble,PrefixRatio,N_subc,N_used,...
Idx_used,N_Tx_ant,TurnOn.AddChFreq);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 3. 多天线多径信道部分
for u = 1:N_user % 多个用户接收机的循环
% 信道和接收机区分开不同用户的原因:
% 1) 每个用户(移动台)的信道功率时延谱和衰落系数是不同的, 需要区别
% 2) 自适应调制和子载波分配算法中, 需要知道每个用户的信道响应
recv_signal = channel( transmit_signal,h_time{u}, ch{u}, N_Tx_ant, N_Rx_ant,...
PreNoiseLen, PostNoiseLen , var_noise,N_subc,PrefixRatio,N_sym,...
delta_fc,T_sample,TurnOn.FreqSyn ,TurnOn.AddChFreq );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 4. 接收机部分
% 接收机帧定时(包检测,粗定时)
[recv_frame, err_frame_timing] = frame_timing( recv_signal ,Window1, Threshold1,...
Delay1,PreNoiseLen, PostNoiseLen, N_subc, PrefixRatio, FrameTiming, N_Rx_ant ,...
TurnOn.Timing ,TurnOn.AddChFreq);
% 粗频偏估计 (整数倍的频偏估计). 也可以在频域做,使用freq_syn_freqdomain模块
[coarse_freq_out, offset1] = freq_syn_timedomain( recv_frame, WinStart, WinSize, Delay2, T_sample,...
N_Rx_ant,TurnOn.FreqSyn ,TurnOn.AddChFreq);
% 符号定时(精定时)
[timed_sym , err_sym_timing] = sym_timing( coarse_freq_out ,N_subc, PrefixRatio, N_sym ,...
N_syn_preamble,syn_preamble,Window2,TimingAhead, N_Rx_ant, TurnOn.Timing ,TurnOn.AddChFreq);
% 精频偏估计(分数倍的频偏估计),如果粗频偏估计已经满足估计器的MSE要求, 则可以不使用此模块
% 调用和粗频偏估计相同的函数,只是输入参数不同
[fine_freq_out,offset2] = freq_syn_timedomain( timed_sym,WinStart2, WinSize2, Delay3, T_sample,...
N_Rx_ant,TurnOn.FreqSyn ,TurnOn.AddChFreq);
% OFDM解调
ofdm_sym = ofdm_demod( fine_freq_out, PrefixRatio, N_subc, N_sym_ts, N_ts , N_Rx_ant ,TurnOn.AddChFreq );
% 在频域加入信道响应
ofdm_sym = add_freqdomain_reponse(pilot_added,H_freq{u},N_subc,N_syn_preamble,N_sym,N_Rx_ant,...
N_Tx_ant,var_noise,ofdm_sym,ChannelEffectTest,TurnOn.AddChFreq);
% 分离提取数据OFDM符号和导频OFDM符号
[ data_sym,pilot_sym] = pilot_extract(ofdm_sym,N_subc,N_pilot_sym_ts,N_data_sym_ts,N_ts,Pos_pilot_sym,...
Pos_data_sym,N_Rx_ant);
% 频域信道估计器, 如果使用了时域均衡, 则不使用此模块
[channel_est , mse_ce] = channel_estimator( pilot_sym,known_pilot,SISO_CE_Method,MIMO_CE_Method,...
L_delay,InterpMethod,H_freq{u},N_Tx_ant,N_Rx_ant,N_subc,N_used,Idx_used,Modulation,var_noise,...
ch{u},N_ts,N_sym_ts,N_pilot_sym_ts,N_data_sym_ts,Pos_pilot_sym,Pos_data_sym,N_syn_preamble,...
frame,Idx_cir,TurnOn.ChannelEst ,ChannelEffectTest ,SwitchOrthogonalPilot );
% 接收机分集处理和空时解码
st_decoded = st_decoding( data_sym,channel_est,N_subc,N_data_sym, N_Tx_ant, N_Rx_ant ,ST_Code ,...
Idx_data,RateSTCoding,Modulation,HardOrSoft,LST_method,var_noise,ChannelEffectTest);
% 根据每用户,每子载波的调制方式,进行解调
demod_user_bit = demodulator( st_decoded, user_subc_alloc{u} ,mod_subc{u} ,pad_bit_cnt(u),TurnOn.AdptMod);
% 信道解码, 包括RS解码, 卷积码Viterbi编码等
demod_user_bit(Alpha2) = demod_user_bit;
decoded_user_bit{u} = channel_decoding( demod_user_bit,ChCodingMethod,Dec_alg,L_total,Generator,Puncture,...
N_iter,RateChCoding,Alpha,Turbo_frame,N_Turbo_frame, UserRS_Coding(:,u) ,UserTrellis(u) ,...
TraceBackLen, user_bit_cnt(u) , TurnOn.ChannelCoding );
% 本帧,本信噪比下,本用户的性能统计
bit_err = sum(abs(decoded_user_bit{u} - user_bit{u}));
ber = bit_err / length(decoded_user_bit{u});
frame_err(frame, snr_idx) = ( bit_err ~= 0 );
if TurnOn.FreqSyn
freq_err = delta_fc - (offset1 + offset2);
else
freq_err = NaN;
end
user_bit_err{u}(frame,snr_idx) = bit_err;
mse_ce_acc{u}(frame,snr_idx) = mse_ce;
mean_nor_H = sum(H_freq{u}(Idx_used,2,1)'* H_freq{u}(Idx_used,2,1))/N_used;
mean_nor_H = sum(abs(mean_nor_H))/N_Rx_ant;
nmse_ce_acc{u}(frame,snr_idx) = mse_ce/mean_nor_H ;
frame_timing_acc{u}(frame,snr_idx) = err_frame_timing ;
freq_syn_acc{u}(frame,snr_idx) = freq_err ;
end % 多个用户接收机的循环结束
% 实时显示仿真性能
fprintf('Eb/No:%d dB\tFrame No.:%d Err Bits:%d\tBER:%f\tCh.Est. MSE:%f Timing Err(Sample):%d\tFreq.Syn. Err(Hz):%d\n',...
Eb_No_dB, frame, bit_err,ber, mse_ce, err_frame_timing , freq_err);
end % OFDM帧
ber_snr = sum(user_bit_err{u}(:,snr_idx))/(length(decoded_user_bit{u})*N_frame);
fer_snr = sum(frame_err(:,snr_idx))/(N_frame);
mse_snr = sum(mse_ce_acc{u}(:,snr_idx))/(N_frame);
fprintf('\nStatistics for the current Eb/No:\t');
fprintf('BER:%f\t FER:%f\t Ch.Est. MSE:%f\n',ber_snr,fer_snr,mse_snr);
timer(snr_idx) = toc; % 计算时间结束
time_passed = round(sum(timer)/60);
time_left = round( (length([Eb_NoStart:Eb_NoInterval:Eb_NoEnd]) - snr_idx)*time_passed/snr_idx );
fprintf('\nTime Passed:\t%d min\t Time Left:\t %d min\n\n\n',time_passed,time_left);
snr_idx = snr_idx + 1;
save saved_data.mat; % 保存数据
end % Eb/No信噪比循环结束
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 5. 性能评估部分,可以保存需要的数据,并对目标性能数据进行操作
% 如画图, 比较,进一步计算得到结论等
performance_eval;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 仿真程序结尾
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -